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Then express the system of constraint equations in the following matrix form :

@ ® ) m
€ 3, a 3 4, H
( .
B BY B B gz
. X1

1 -1 -2 0 0 0 x 0

0 1 11 0 0 21_|3

0 1 2 0 ] 0 || X {7|s

0 3 1 0 0 1|l x | |6

L X5
Now form the revised simplex table for the first iteration.
Table 6.7 Additionai Table
Variablesin | Bg!" I B,(D B, B Xz X, @ .
thebasis | e, f@® @@ @M |6=D| g, " o
z 1 0 0 N ) o -1 -2
X3 =Xg) 0 1 0 0 301 3/1 1 1
Xy = Xpa 0 0 1 0 5 572 € i , 2
X5 = Xp3 0 0 0 1 6 1 6/1 3 1
. \J{/ ) 4‘
) Bl_l
' First Iteration
Step 1. Compute A, for a,“) and az(l), ie. (A, Ay.
‘ -1 =2
(A, Ay} = (first row of B; ) x (a", a")=(1,0,0,0)| | ,|={-1,-2)
3 1

Hence A;=—1, A,=-2.SinceA; and A; both are negative, the solutionx; =3, x4 =5,x5=6,2= Ois
not optimal. Therefore, we proceed to obtain the next improved solution.

Step 2. Determination of entering vector a,fl)

To find the entering vector aél) ,apply therule : Ay =min [A;, Aj]=min [- 1,-2]=-2=4,

Hence k=2 . So the vector az(l) must enter the basis. This shows that x, will enter the basic feasible solution.

Step 3. Determination of the leaving vector 3 ,(]) , given the entering vector az(l) .

Compute the column x" corresponding to vector azm .

100 0y—27 -2

) o1 0 of 1] |1
x"=B"a"=0 o | ol 27| 2
o000 1l 1] L1

Apply the minimum ratio rule by increasing one more column in Table 67 . This rule shows that [2] is the ‘key
element’ corresponding to which Bz(l) must leave the basis matrix. Hence x4 will be the outgoing variable.

Step 4. Determination of the improved solution.
From Table 6-7 , the intermediate coefficient matrix is :

Bl ps" ps" xg" x"
0 0 0 0 -2
1 0 0 3 1
0 1 0 5 (2]
0 0 1 6 1
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Apply usual rules of transformation to obtain

] 2 0 5 0
1 -1/2 0 172 0
0 172 0 572 1
] -12 1 772 0
and then construct Table 6-8 for improved solution.
Table 68 Additional Tabie
B!
Variables o B g B x® x» a all
in the basis ' .
z 1 ] 1 0 5 -1 0
X3=Xxg ] 1 -12 0 172 1 0
X3=Xg 0 0 12 0 5/2 1 1
X5 =Xp3 0 0 -172 1 172 3 0

The improved solution now becomes :z=5,x3=1/2,x,=5/2,x5=7/2.
Second Iteration
Step 5. Computations of A, for aiV and all ie,

(A;,A)=(1,0,1,0) ={0, 1}

OO0

-1
1
1
3

Hence A; =0, A4 =1.Since A, and A4 both are > 0, the solution under test is optimal.
Furthermore, A; = 0 shows that the problem has alternative optimum solutions. Thus, the required optimal
solutionisx; =0,x;=5/2,maxz=5.
Alternative solution can also be obtained as x; = 1, X, =2, max. z=5 .
Example 3. Solve by revised simplex method :
Max. z = 6x) — 2x; + 3x;3 subject to 2x1 =X+ 2x3 €2, %) +4x3<4andx; ,x;,x3 20.

[Kanpur B.Sc. 95]
Solution. The given problem in the revised simplex form may be expressed by introducing the slack
variables x4 and x5 as

z—6x,+2x2—3x3 =0
le - X3+ 2’63 + x4 =2
X1 + 4X3 +x5 =4.
The system of constraint equations may be represented in the following matrix form :
e a’ a’  a® W0
o B B
z
X
1 -6 -3 0 0 % 0
0 2 -1 2 1 0 =|2
0 1 0 4 0 1 ] %3 [ 4 J
X4
Xs

The starting revised simplex table is given below in Table 6-9.
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Table 6.9 Additional Table
Variables in the Basis | ¢ B](‘) Bz(l) Xé” xél) = xl(‘) Min. aM az“) a;m
(Xp/X1)
z 1 0 0 0 -6 { -6 2 -3
X4 = Xp| "ol 1 o 2|  d2]----- Py P 2 -1
X5 = Xp2 o] o0 1 4 1 4/1 ] 0 4
! 4
B, '
The starting solutionis:x; =x,=x3=0,x=2,x5=4,2=0.
First Iteration
Step 1. Computations of Ajfora;” , a" and ai" ,ie., (A, A, A3) .
-6 2 -3
(A1, Ay, Ag) = (first row of B ") (af” , 23", a{") = (1 ,0,0)[ 2 -1 2}= {~6,2,-3)
1 0 4

Hepce A =—6,4,=2,A3=-3.
Sirice A; and A; are negative, the solution under test is not optimal.

Step 2. Determination of the entering vector al .

The entering vector aV corresponds to the value of k which is obtained by the criterion :
Ak=min. [A] ,Az,A3]=min {"6 ,2,—3} =“"6=A1 .
Hencek=1.
So the entering vector is found to be al(l) . This also means that the variable x; will enter the basic solution.
)] (1)
r 1 -

Step 3. Determination of the leaving vector B, , given the entering vector a

First we need to compute the column X,V corresponding to the entering vector al(l) .

1 0 0-6] -6
x"=B"al’={0 1 0| 2|=| 2
00 1] 1 |1

Now apply the min. ratio rule by increasing one more column in Table 6-9. This rule indicates that [2] is
the ‘key element’ corresponding to which Bl(l) must leave the basis matrix. Hence x; will be the outgoing
variable.

Step 4. Determination of the firstimproved solution.

i Bs" Xg" x’

, 0 0 -6
1 0 2
0 1 4 1

To transform the Table 6-9 , transform the above intermediate coefficient matrix.
Apply usual ruies of matrix transformation to obtain

3 0 6 0
12 0 1 1
-172 1 3 0

Now construct the transformed Table 6-10 for second iteration.
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Table 6-10 . Additional Table
B
Variable§ in ' Min. 34“) 32(1) a;m
the Basis e E m Y X x P =xV (Xnixz) ’
z 1 : 3 0 6 -1 0 3 =3
X =xg 0 | 172 0 1 -1/2 — 1 - 2
X5 =Xxpp 0 : -2 i 3 3/%(— 0 0 ¢
i

The improved solutionis:2=6 ,x;=1,x=x3=x4=0,x5=3.
Second Iteration
Step 5. Computations of A, for afV, a and 83(1) (ie., Ay, N, Ay).

0 2 -3
{A4,A2,A3}=(ﬁrstrowofB,‘1)(a‘,(l),az(l),a:,(l))=(l,3,0)[ 1 -1 2 }:{3,—1,3}
0 0 4

Hence A4=3,A;=—1,A3=3. Since A, is still negative, the solution under test is not optimal. Hence
further improvement is possible. So we proceed to find the ‘entering’ and ‘leaving’ vectors in the next step.

Step 6. Determination of the entering vector aél) .

Here, we have Ay = min. [Ay, Ay ,Az]l=min. [3,~1,3]=-1=A,. Hencek=2.

Therefore, az(l) must enter the basis. The entering vector az(l) indicates that the variable x, must enter the

new solution. _
Step 7. Determination of the leaving vector B,“) , given the entering vector a)" .
First compute the column X, corresponding to vector azm .

1 3 091 2 -1
XV =B;"a’ = [0 1/2 0} [— 1} = [— 1/2J

0 -1/2 1)1 0 172

Now complete the column X, = X3 of Table 6-10.

The ‘min ratio rule’ in the additional column of Table 6-10 indicates that 1/2 is the key element

corresponding to which the vector B5") must leave the basis. Hence x5 will be the outgoing variable.
Step 8. Determination of the next improved solution.
Transform the Table 6-10 into Table 6-11 from which the next improved solution can be easily read.

Table 6-11 Additional Table
- : 1
Ve Bass . AV W e
ey i B(]) B(” xlgl) x(l)
_____ LI IS S S S N R S 0 0 -3
Xy =Xpg) 0 i 0 I 4 1 0 2
X2 =Xpg 0 ! -1 2 6 0 1 4

The next improved solution from Table 6-11is:2=12 ,x, =4 ,x,=6 ,x3=x4=x5=0.
Third Heration
Step 9. Computations of A; for a}l) , as(” and a3(l) Jie. (AgyAs,A3).

{A4, As, Az} = (first row of B; ') (3" ,a" ,a") = (1,2,2)

(=
-0 O
PO S V]

J={2,2,9}
Hence Aj=2,A¢=2,A3=9.
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The solution under test is optimal because A4 , As , A; are all positive. Thus, the required optimal solution is :
x1=4,x=6,x3=0,max.z=12. Ans.
Exampled. Solve the following L.P.P. by revised simplex method.
Max z=3x;+xy+ 2x3+ Tx4 , subject to the constraints
2x1 + 3X2 - X3 +4X4 <40, - le + 2x2 + SX3 - X3 < 35,1’1 + X5 — ZX3 + 3X4 < 100, and
x122,x221,x323,x424. ’
Solution. Step 1. In order to make the lower bounds of the wvariables zero, we substitute
x1=y1+2,x=y;+1,x3=y3+3, x4=ys +4inthe given LPP and obtain the following modified problem :
Maximize 2’ =3y, +y, + 2y;+ Ty, where 2’ = 7 — 41
SUbjeCt to 2y1 + 3}’2 -y3;+ 4y4 <20
=2y; + 2y, +5y3 - y4< 26
Y1+y2—2y3+3y4<91
1 20,)’220,)’320,)’420.
Step 2. To express the modified LPP in revised simplex form.
Max.z =3y, + y, + 2y3 + Tys, subject to

and

=3y~ y2-2y3—-Tys =0
2y1+ 3y, — y3+4ys +ys =20

—2y1+ 2y, +5y3 -y +ys =26
Y1+ ya—2y3+3y, +y7=91,

y;i20@(=1,2,...,7), and 2’ is unrerstricted in sign.
Clearly, the problem is of standard form—I.
in matrix form, the system of constraint equations can be written as :

a
(1) M. o0 a0z
Bo By B2 Bs Y
Q) o m Q) m o |-
€ L a 23 ay as ag a |y, 0
y 20
3 =
1 -3 -1 -2 -7 0 0 o1y 26
0 2 3 -1 4 1 0 0 MBI
0 -2 2 5 -1 0 1 o ||
0 1 1 -2 3 0 0 || e
.y7 4
Step 3. To find initial basic solution and the basis matrix B, .
Here X3"=(0,20,26,91) is the initial BFS and basis matrix B, is given by
B =[Bg", B, Bs", Bs"1= Ly (unit matrix). So By ' =1,
Step 4. To construct the starting simplex table.
: Table 6-12
Valxl'ia:lss in 'Bl_l SOIu(t:i)On X ‘{1) =X 4(1) iR
the basis T 1 1 “1 a in. Ratio
Bél) ! Bl( ) BZ(I) B?( ) Xz =B 84( ) (Xp/Xq)
€ i ag" ag’ a
4 1 ; 0 0 0 0 -7
___________________________ ’,--_---....-»-—_--—'--._------_-----..__-..- —— - - .. --—-—-- - - -_— - e e e m- - ot
vs 0 : 1 0 0 20 5  (min.)
6 0 : 0 1 0 26 -1 —
¥ 0 : 0 0 1 91 3 91/3
3

Outgoing vector

T
incoming vector

Step 5. Testfor optimality. Compute A; for all aju) ,J=1,2,3,4notinthe basis.

(A1, Ay, Ay, Ay) = (first row of B; ') [a

)

(1) (1) Qa
y3 ,33 ,a4 )]
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-3 -1 -2 -7
=(1.0,0,0)| 3 5 "L _{=¢3,-1,-2-7
1 1 -2 3

Since all A;’s are < 0 , the solution is not optimal.
Step 6. To find incoming and outgoing vectors.

Incoming vector. A, = min Aj ==T=A4, .. k=4,
J
Thus a" is the vector entering the basis. So the column vector X coresponding to a,;(l) is given by
X =8;"a’=1,(-7,4,-1,3)=[-7,4,-1,3]
. X, . X . .
Outgoing vector. Since x—B' = min [%Q y=s -93—1] = ? = ;B—l ,sor=1 and hence B;m =aiV isthe outgoing
rd 14

vector.

. Key element = x4 = 4, by min. ratio rule.

Step 7. To find the improved solution.

In order to bring aVin place of B,‘l) (= as(l)) in B} ', we divide second row by 4 and then add 7, 1 and — 3
times in first, third and fourth rows, respectively to get the revised simplex Table 6-13.

Table 613
Variables in the B; ! Solution X0 =xP
basis T S -1 a
B’ Y ps" Bs" Xs =B & Min, Ratio
!
e E aV aV af? Xp/X3
z 1 i_ 7/4 0 0 35 -15/4
U Y EQUU S0 U RPUpR ORI OUPIR] NP IPIY SN SRR -
Ya 0 i 174 0 0 5 - 174 —_—
Y6 0 i 174 ! 0 31 19/4 124/19 ¢
» 0 1 ~3/4 0 1 76 ~5/4 —
{, i)
Outgoing vector incoming vector

Step 8. Test of optimality for the revised solution Table 6-13 .
We compute (A , Ay, As, As) = (first row of By V) (a", af? , a{?, a{V).

-3 -1 -2 0
=(1,7/4,0,0)| 3 3 "1 ll=11/2,17/4,-15/4,7/4)
1 1 -2 0

Since Az = — 15/4 is still negative, the solution under test is not optimal. So we proceed to improve the
solution in the next step.
Step 9. To find entering and outgoing vectors.

As in step 6, we find the entering vector a3(') . The column vector X4” corresponding to agfl) is given by

XM=, 'a{V=[-15/4,-1/4,19/4 ,-5/4] .
By min. ratio rule, we find the outgoing vector is Bz(” =ad" . Sothe key element will be 19/4 .
Step 10. To find the revised solution.
In order to bring a3(1) in place of Bzm (= as(’)) in the basis By ! we divide the third row by 19/4 and then add

its 15/4 , 1/4 and 5/4 times in first, second and fourth rows respectively to obtain the next revised Table
614 .
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Table 614
Variables Bl_l Solution xk( Yox 1(') Min ratio
in the basis 1 H 1 1 1 X, (1) -1 _ 1) XB/xl
B | B Bs" By" i =B &
e i a“(l) a3(l) a (1

4 1 i 37/19 15719 0 1130719 -13/19

Ya 0 ; 5/19 1/19 0 126/19 8/19 63/4 «

3 0 i 1/19 4/19 0 124/19 -6/19 —

» 0 ¢ —=13/19 5/19 1 1599/19 -17/19 —

{ T
Outgoing vector Incoming vector

Step 11. To test the optimality for the revised solution Table 6-14 .

We compute, [A, , A, , As , Agl = (first row of B; ") [a”, at?, ad , a{?]

0
_[=13 122 37 15
119719719719

J[1 3115 2 310
11971972 2 01
| 1 00
Since A; < 0, the solution under test is not optimal. So we proceed to revise the solution in the next step.
Step 12. To find entering and outgoing vectors.

As in step 6, we find the entering vector al(l) . The column vector corresponding to al(l) is given by

W_p-t,m_|=13 8 -6
=B A= T 180 19 19
o

By min ratio rule, we find the outgoing vector is B a,,m . So the key element is 8/19.

Step 13. To find the improved solution.

In order to bring a” in place of Bl(”(= a.;(l)), we divide second row by 8/19, then add its

13/19,6/19 and 17/19 times in first, third and fourth rows respectively to obtain the next improved solution
Table 615 .

Table 6-15
Varaibles in B 1 Solution
the basi i [Q]
© asis By , B Bs" Bs" Xp
&1 H alm 83(]) ay"
_____ A S U N U2 S 7 S O B | V2 S
y1 0 | 5/8 1/8 0 63/4
3 0 | 1/4 1/4 0 23/2
y1 0 | -1/8 3/8 1 393/4

Step 14. To test the optimality of the improved solution Table 6-15 .
We compute, (A, , Ay, As , Ag) = (first row of B, ") (az(l) s a}]) s a_rf') , (l))
-1 700
(1 2T o) 3 41 0/_(63 13 197
- ’8’8, 2_10]_8’8,8,8
1 300

Since all A; > 0, the solution under test is optimal. So the optimal solution of modified LPP is,

y1=63/4,y,=0,y;=23/2,y,=0and max z’ = 281/4 .
Transforming this solution for the original LPP, we get the desired solution as,
X=y+2=T1/4 , =y+1=1,x3=y3+3=29/2 ,x4=y, +4 =4

and max z=max (7' +41) =445/4 . Ans.
6.8. SUMMARY OF REVISED SIMPLEX METHOD IN STANDARD FORM-
(Computational Procedure) [Meerut 90]

The computational procedure of revised simplex method in standard form-I (when no artificial variables are
needed) may be more conveniently out-lined as follows :




142 / OPERATIONS RESEARCH

Step 1. Ifthe problem is of minimization; convert it into the maximization problem.
Step 2. Express the given problem in Standard Form-I.

After ensuring that all b; 20, express the given problem in revised simplex form-I as explained in section
63.

Step 3. Find the initial basic feasible solution and the basis matrix B,.
In this step, we proceed to obtain the initial basis matrix B, as an identity matrix. Thus the initial solution is
given by xél) =(0,by,by, ..., by).

Step 4. Construct the starting table for revised simplex method as explained in section 6-6.
Step 5. Test the optimality of current BFS.

This is done by computing A; = z; — ¢; for all aj(l) not in the basis B; by the formula :

‘Ai = (first row of B; ') x (aju) not in this basis)
The BFS is optimal only when all A; 2 0 .

If current BFS is neither optimal nor unbounded, proceed to improve it in the next step.
Step 6. Improve the BFS.

In this step, we first find the incoming (entering) vector and the leaving (outgoing) vector to obtain the
key element. Then we determine the improved solution like regular simplex method as follows :

(i) To find in-coming vector. The incoming vector will be taken as aél) if Ay = min (A)) for those j for
J

which aj(l) are not in the basis B, .
(i) To find out-going vector. For this, first we compute X, by the formula :
X =B " = (A, i Xk e K]

The vector B to be removed from the basis is determined by using the minimum ratio rule. That is, it is
selected corresponding to such value of r for which

&v= m.ln [E‘Bl » Xik > 0] x
Xrk o Xk
Note. ‘Here a, " is the in-coming vector and X" is the column vector corresponding to a.
(1) To find the key element. When a" is the in-coming vector and B" is the out-going vector, the
key-element x,, is situated at the intersection of rth row and kth column of the matrix.

(iv) To transform the revised simplex table. :

In order to bring ak(l’ in place of B,“), we proceed similarly as in ordinary simplex method and then
construct the new (revised) simplex table. "

In this manner, we obtain the improved BFS.

Step 7. Now again test the optimality of above improved BFS as in Step 5

If this solution is not optimal, then repeat step 6 until an optimal solution is finally obtained.

Q. Give abrief outline for the standard form | of the revised simplex method. [Dethi BSc. (Maths) 93, 91, 90]

EXAMINATION PROBLEMS
Use revised simplex method to solve the following linear programming problems :

1. Max.z=x1+xp 2. Max.z=x3+2x; 3. Max.z=5x; +3x
subject to the constraints : subjectto subjectto
3x1+3x<6 X1+ 2x% <3 3x1+5x% <15
Xi+4x:<4 X1+ 3x <1 3x1+2x < 10
X1, X>0. X1, X%<0. Xy, X20.
[Ans.x,:g,xzzg,max.z=—g] [Ans. x;=1,x=0,2"=1] [Ans.x1=22 45 2*228;5

19°%2=79" 19
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4. Max.z=3x1+2x2+5x3 5. Max.z=xy+X%+3x3 6. Max.z=30x; + 23x, + 29x3
subjectto subject to the constraints : subject to the constraints :
X1+ 2% + X3 £ 430 31 +2% +x3<3 6x1+5x+3x3<26
3x; +2x3 < 460 2X1+Xp+2x3<2 4x1+2x +5x3<7
X1+ 4x < 420 Xy, X%,x320. and xq, X, x, 20
X1, X2, X320, [Meerut M.A. (P) 93]
[Ans. x; =0, x; =100, x3 =230, z* = 1357] [Ans. x;=0,%=0,x3=1,2"=3] [Ans. x;=0,%=7/2,x3=0,
' z*=161/2]
7. Max.z=xy+ xo, 8. Max.z=2x;+3x; R
St X1 +2x%<2 st x-x20, <4, and
4x1+ X% <4 X1, X220
X1, Xp 20
[Ans. x=6/7, x,=4/7, max 2= 10/7} [Ans. Unbounded sol.] N

8.  Explain the revised simplex method and compare it with the simplex method.

Revised Simplex Method in Standard Form-Ii
6.9. FORMULATION OF LPP IN STANDARD FORM-II

The Standard Form—I1 is used when artificial variables are required to obtain the initial basis matrix as an
identity matrix. The unit vectors correspord to either slack or artificial variables. If the revised simplex
procedure starts with artificial vectors, there wiil be a problem of driving all artificial variables to zero to
obtain an initial feasible solution (if exists). Thereafter, iterative procedure for successive improved solutions
may be continued till the optimality conditions are satisfied. Two-Phase-Method will now be used in a sli ghtly
different manner.

In Phase I, an initial basic feasible solution is found by driving all artificial variables to zero. While, in
Phase II, we start with the initial basic feasible solution obtained in Phase I. While discussing the Standard
Form I in the preceding sections, it is found very useful to treat the objective function as one of the constraint
equations.

Now the approach in Phase I and Phase Il is discussed.

Phase I.[Initial basic feasible solution driving all artificial variables to zero].

Suppose each constraint of the problem is present in the form of equation (although no difficulty will arise
even if some or all of the constraints are inequalities). As explained earlier, one artificial variable is required to
be introduced in each of the m constraint equations in order to get the basis matrix as an identity matrix. Thus,
for the revised simplex method, the L.P. problem can be written as follows:

Maximize z, subject to the constraint

I=CX] — Xy — ... — (X, =0
anxytapxt ..o +ayx, +x,, =b,
ax) Xy +apx+...+ay,x, + X492 =b, ...(6:22)
Am X + Apa Xy t+... +amnxn +xn+m =bm

Since it is desirable to introduce one more additional constraint equation (its utility and method of
construction will be explained just now) at the second place of constraint system (6-22), it will be convenient

to leave space at the second place shown by dotted line (........... ). Thus, for convenience, the constraint
equations (6-22) are re-written as follows :

T = OpXp = OXp— . T Oy =0

............................................................................................

apXp+apX . tapx, +x,, - (6-22)
aynxy+axpx; + ... +ayx, +X, 42 = by

A Xy + AppXy + ..+ 4y, + X m=b,,
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To generalize the concept of artificial vectors and facilitate the computation of Phase 1, calculate a
‘redundant’ constraint equation which is called the second consiraint equation. Now the system (6-22) of
constraint equations together with the newly calculated second redundant equation becomes

—C1xX —CaXg— ... —CpXy =9 (l)
E”xl +512x2+ +E,,,x,,+‘i,,+1 =b1 (ii)
apixy +apxy +...+aX, +Xp 41 =h

: . : : (iit)
AiX|  FapXy + ot Gy +Xpem =bp

where constraint (i) is the objective function, and the additional constraint (ii) is so formed as :

— m
ap=-(ap+ay+.. +am)=- ‘.Z:l“il

m
012=°(012+022+ +a,,,2)=— i?]aiz

_ m
ag,=—(ap+ay+...+ay)=- i§la,~,,

and El=-(b,+b2+...+b,,,)=-Elb,.,
i=

where X, ., ; is the variable unrestricted in sign. The system [(i), (ii) and (iii)] of constraint equations can be
more systematically written as

Xo+ agixy +agy Xp + ... + g pXy =0
apxytap X+ ... tay Xyt X, =b‘
anpxytapxt..t+a,x, +X, 41 =b| ..(6:23)
Ay X+ Ay XpF oo Gy Xy +Xpom=bm
whcrez=xo,—cj=a0j, and j=1,2,...,n. »on
Adding all constraint equations except the first one, we get e MUY

-~
.

- m _ m - m - —_ ‘
(an+ X ai yat+(ap+ L aip)xt -~'+(aln+i§‘1ain)xn+xn+l +xpsp oot X em=(b +Z b;)

..(6:24)
Further, substituting the values of a1, a2, ..., @1, and b, from above relations, we get

Xps1+Xps1+ oo T Xnem=0. ...(6:24q)

Since all the artificial variables x, . 1, X + 2, - .+» X + m &T€ NON-NEgative, X, , ; can never be positive. So, in
Phase I, the problem is to maximize X, ., ; [not xo = z] subject to the system of constraint equations, with
xo and X,, , ; both unrestricted in sign. This process will result as follows :

(a) either max. X, ., =0, which automatically drives all artificial variables equal to zero and the original
variables x; forj=1,2, ..., n of this “preliminary maximum solution” represent a basic feasible
solution to start with Phase II for maximizing z or xg. :

(b) or max X, ., is negative, which clearly shows that at least one artificial variable still has a
non-negative value, and hence no feasible solution exists to the original problem.

Phase II. After driving all artificial vectors to zero, enter Phase II. The procedure in Phase II will be
exactly the same as in section 6-6 for srandard form-I. Detailed procedure of Phase II has been made clear in
section 6-12.
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[ 6.10. NOTATIONS AND BASIS MATRIX IN STANDARD FORM-I| J

The system of constraint equations (6-23) in the preceding section can be expressed in the matrix form as
follows :

_xo 1
*
1 aun 42 ... 9« 0 0 ... O x 0
i -.—.. _. ......... . ;
0 411 %2 . %% 1 0 .. O X |= bl (6-25)
0 an a4 .. a4, 0 T 0l x !
. . . . n+1 :
0 Gu Gp - @my 0 0 ... 1 x"f' b
an+m-

Basis. From matrix equation (6-25), the starting basis matrix will be an (m +2) X (m + 2) unit matrix
denoted by I, , ,. Since the initial basis matrix I, , » is of order m + 2 in standard form-II, use a subscript  on B’
(B is the original basis matrix). Thus, the initial basis matrix B, for standard form-I1 is given by

X0 En+1 Xn+l- Xn+m
1 o : 0 ... 0O
0 1 : 0 ... 0
B:=lo 0 1 ... o
: : : B
0 0 . 0 1

Since B;=1,,,2, B2 ! =1,,,, =B, initially. Consequently, last m rows and m columns of B, represent the
inverse of original initial basis B.

Since all the vectors have m + 2 components, a superscript @ on vectors will indicate the quantities
appropriate to standard form-II. For example, matrix B, can be written in terms of vectors as :

2 2 2
B,=(e;, e Bl( )’ B2( )’ cees Br&: ))

[ 6.11. COMPUTATIONAL PROCEDURE FOR STANDARD FORM-II j

The computational steps for Phase I and Phase Il are as follows :
Phase 1. When artificial variables are present in the initial solution with positive values.
Step 1. First construct the simplex table in the following form. .

Initial Table 616
[ Variables in the el e o B 2 X X
: basis
%o 1 0 0 0 0
Fusl 0 1 0 0 0
————— X +,00100_
Y42 0 0 0 1 0
Xoem 0 0 0 0 1

In Phase I, maximize X,, , ; (not xo = z), as explained in the previous section.
Step 2. Ifx, | <0, compute A; = z;— ¢; = [second row of B, l] [aj(z)] and continue to step 3 and so on.

(ii) If max. Xp+1=0, goto Phasell.

Step 3. To find the vector to be introduced into the basis.
(i) IfA;20,X,, isatits maximum and hence no feasible solution exists for the problem.
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(i) If at least one A; <0, the vector to be introduced in the basis, X,2, corresponds to such value of &

which is obtained by : A, = min A; (for those j for which aj(z) not in the basis).
(iii) If more than one value of A are equal to the maximum, we select A such that k is the smallest index.
Stepd. To compute X, by using the formula : x,° = B; ' 82,
Step 5. To find the vector to be removed from the basis.
The vector to be removed from the basis is obtained b using the minimum ratio rule :
XBr .| XBi .
——=min|—,x;>01i=1,2,...,m.
Xrk Xik

If there is degeneracy, resolve it by using one of the niethods described in Chapter 3.

Step 6. After determining the ‘incoming’ and ‘outgoing’ vectors, next revised simplex table can be easily
obtained.

Repeat the procedure of Phase Ito get max. X, | = 0 or all A; for Phase I are 2 0.

If max. X, . ; comes out to be zero in Phase I, all artificial variables Xn+15 Xn+2s «--» Xp 4+, Mmust have the value
zero. It should be noted carefully that max. X, , ; will always come out to be zero at the end of phase I if the feasible
solution to the problem exists.

We now proceed to maximize xq (= z) in Phase Il

Phase I1. Maximize x (= ).

In Phase I, x, .. , is considered like any other artificial variable ; it can be removed from the basic solution.
Only xo must always remain in the basic solution. However, there will always be at least one artificial vector in
B, , otherwise it is not possible to have an m + 2-dimensional basis.

The procedure in Phase II will be the same as described in standard  form-1.
Compute A; = zj— ¢j= [first row of B, l] [aj(z) ] for those values of j for which aj(z) are not in the basis.

Then, find the ‘incoming vector’ and ‘outgoing vector’ as described in standard Jorm-1I, and continue
improving the current solution till the optimality conditions of simplex method are satisfied.

Q. 1. Describe the revised simplex method, when artificial vectors are added to obtain the identity matrix for initial basis matrix.
2. Standard form li of the Revised Simplex Method is used for solving an L. P.P. of which type ?
3. Give brief outlines of the standard form Il of the revised simplex method.

Example 5. Solve by revised simplex method the problem :
Max. z=xy + 2xy + 3x3 — x4, subject to the constraints
X; + 2%, + 3x3 =15, 2x, + x5+ 543 =20, X1+ZX2+.X3+X4=10, and X1 ,X3,%3,x420.
Solution. Step 1. First write the objective function as first constraint. i.e.
i=-x —2xz—3x3+x4=0.
Then introducing the artificial variables xg , x; , Xg to each of the three constraint equations respectively, we get

X1 +2X2+313 + Xg =15
2xy + X2+5X3 + X7 =20
X1 +2x+ X34+ x4 +x3=10.

Form a new constraint equation taking the negative sum of above three constraints which have been given at
the second place of the new system of constraint equations. Thus, the second constraint equation now becomes
—4x; — 5x — x3 — x4 — (g + X7 +xg)=—45
or —4x) = 5xp = 9x3 — x4 + x5 ==45, ' where x5=— (x5 +x7+x5) .
Rewriting the new system of constraint equations in proper form (including the objective function),
Z—X1—2X2“3X3+X4 = 0 :

—4x1—5x2—9x3—x4+x5 =-45
x; +2x + 3x3 + Xg = 15
2x1+ x5+ 5x3 +x7 = 20

X1 +2x+ x3+ x4 +xg= 10.
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Expressing the system of constraint equations in the matrix form.

@ 2) 2 2 2 2 2 2 Z
a2 a® o a® & a® a® & )  |x
2 2) 2
(&) , €@ G 6 ¢ |7 0
*3 - 45
1 -1 -2 =3 1 0 0 0 0 X4 1= 15
0 -4 -5 -9 -1 1 0 0 0 X5 20
0 1 2 3 0 0 i 0 0 X6 10
0 2 1 5 0 0 0 1 0 x;
0 1 2 1 1 0 0 0 1 %

Here the basis matrix B, (which is the identity matrix) and matrix A, are

2) 2) (2
o e 87 B B 2@ o P W@

-1 -2 -3 1
-4 -5 -9 -1
B = | A=l 1 2 3 0
2 i 5 0
o0 0 0 1 o2l

In the basis matrix B, , fitst two columns (denotéd by ey , €2) associated with the variables z and x5 will
never change because they are unrestricted in sign (that is, may be negative, positive or zero).

First enter Phase I to maximize xs (not z). The phase I will come to an end at the iteration where the
maximum value of xs comes out to be zero (max. x5 = 0).

PhaseI. Construct the starting revised simplex table for Phase L.

Table 617 Additional Table
B;'

Varables ! x® Min. a® ) (2) (@)
. : ' 1 ) a3 a4
inthebasis | ¢ e 51(2) Bz(z) 53‘2) Xéz) (k=3) (Xg/Xa)

|
z o 0 0 -3 -1 -2 -3 1
Xs b 45 -9 -4 -5 -9 -l
X6 0o 0 0 15 3 15/3 1 2 3 0

|
X 0 o i 0 1 0 20 20/5 2 5 0
X3 0 ) 0 1 10 1 10/1 1 2 1

l
(Completed in step 3)
First Iteration

Step 1. Computations of A; for al(z) , a2(2) ’ a3(2) and a4(2) Ji.e. (A, Ay, Ajand Ag)
A, = (second row of B;' ) x (@’ )= (0,1,0,0,0) (- 1,-4,1,2, )=(0-4+0+0+0+0)=-4
A, = (second row of B3 ") (a3?) =(0,1,0,0,0) (-2,-5,2,1,2) =-S5
Ay=(0,1,0,0,0) (-3,-9, 3,5,1)=-9 and A;=(0,1,0,0,0) (1, - 1,0,0,1)=-1.
Since A;, A, , Az, Ay are all negative, the solution (in which x5 =—45) can be further improved to
maximize xs .

Step 2. Determination of the entering vector aéz) .

The entering vector a.ﬁz) corresponds to such value of k which is obtained by the criterion
Ay=min [A;, Ay, A3, Ay =min. [-4,-5,-9,— 1]1=-9=A;. Hencek=3.
The entering vector is thus found to be as? | thereby means that the variable x; will enter the basic solution

(x3 will have a positive value instead of zero).
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Step 3. Determination of leaving vector B ,(2) given the entering vector 83(2).

At this stage, compute the column X,® = X of Table 6.17 corresponding to the entering vector ai®

1000 0][-3] [<3
0100 0/-9]|-9
X?=B;"a®={0 0 1 0 of 3| 3
0001 0| s 5
0000 1] 1 1

Apply the minimum ratio rule by adding one more column in the Table 6-17 . This rule indicates that 5 [ is

the ‘key element’ corresponding to which B2 [a7”] must be removed. Hence x7 will be the outgoing variable
(so x7 will have the value zero).

Step 4. Determination of the firstimproved value of xs .

To obtain the transformed basis matrix, write the intermediate coefficient matrix as before and apply
usual rules of matrix transformation.

B p:” Bs” Xg” x3”
0 35 0 12 0
0 9/5 0 -9 0
1 -3/5 0 3 0
0 /5 0 4 1
0 ~1/5 1 6 0

For second iteration, next table has been formed.

Table 6-18 ‘Additional Table
Variabies in E 2 [ x@ | Min

the basis & e E @ B z(2) i) (k=2)| (Xp/X2) a? a 2 g 2 a ¥

z 1 0 ; 0 3/5 0 12 | -17/5 1 -2 0 1
_______ B0 s 0 s e s 0 -
“x 0 0 l 1 ~-3/5 0 3 /5| | 3/(1/5) « 1 2 0 0
) 0 0 i 0 1/5 0 4 175 | 4/(1/5) 2 1 1 0

Xg 0 0 A 0 -1/5 1 6 9/5 6/(9/5) 1 2 0 1

‘ 3
To be completed in step 3

In this table xs= — 9 (which is not zero), hence enter the second iteration.

Second Iteration
Step 1. Computations of A for al(z) , az(z) s a-,(z) , a4(2), ie (A1,A2,A7and Ay)
A, = (second row of B;") (a%)= (0, 1,0,9/5,0) (- 1,4, 1,2, 1) =~ 2/5:
A=(0,1,0,9/5,0) (-2,-5,2,1,2) =~ 16/5,A7=(0,1,0,9/5,0)(0,0,0,1,0) =9/5;
A4=(0,1,0,9/5,0)(1,-1,0,0,1) =-1.

Since A , A, , A4 are still negative, the present value of x5 is ~9 which is not maximum. Hence proceed for
nextimprovement.

Step 2. Determination of the entering vector a> .

The entering vector a.® corresponds to such value of k which can be obtained by the criterion :
Ay=min [A}, Ay, Ay, Ayl =min [-2/5, - 16/5, 9/5,-11=-16/5=A,, Hence k = 2.

So the vector to be introduced into the basis is az(z) - Hence the variable x, will enter the basic solution.

Step 3. Determination of the leaving vector 3 ,(2) ,given the entering vector az(z) .
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Compute
1 00 35 0f[-2][-13
010 95 0f-5||-16s5
XP=8;"a®={0 0 1 -3/5 0| 2|=| /5
000 50| 1 1/5
000 -1/5 1] 2 9/5

Now it is possible to complete the column ¥ =x? of Table 6-18..

To find the leaving vector [3,(2) , add one more column for min. ratio rule. It has been found that 7/5 will

be the key element, consequently B,(Z) must be removed from the basis.
Step 4. Determination of nextimproved value of xs .

To get the transformed basis matrix, proceed in the usual manner. First, write the intermediate coefficient

matrix as
g B2 B2 x? x2 Then, by usual matrix transformation rules,
0 3/5 0 12 -1/5 1 0 0 15 0
0 9/5 0 -9 -16/5 16/7 3/7 0 -15/7 (i
""" Y S S TR N 7 7 DY, R TR T 7 B B
0 /5 0 4 1/5 -1/7 2/1 0 2577 0
0 -1/5 1 6 9/5 -9/7 4/7 1 1577 0
Construct Table 6-19 for third iteraion.
Table 619 Additional Table
Vinebass e | R
€ e | p B 8 x® @ -1 0 0 1
z 1 . 0 0 15 1 Min. Ratio -4 0 0o -
x Lo aogaen s o |- o | OO 11 0 0
5x 0 o 1 - 3/1 0 15/7 0 2 0 1 0
x3 0 S 0 25/7 0 1 0 0 1
—x3 0 0 -1 41 1 1577 1 15/7 «
d T
Third Iteration

Step 1. Computations of A; for 31(2) , aéz) , a7(2) , a}z), ie. (Ar,A¢,A7and Ag).
A, = (second Tow of B; ") (a)=(0, 1,16/7,3/7,0) (- 1,-4,1,2, 1)=-6/7;

A¢=(0,1,16/7,3/7,0)(0,0,1,0,0)= 16/7.4,=(0,1,16/7,3/7,0) 0,0,0,1,0)=3/7,

A,=(0,1,16/7,3/7,0) (1,-1,0,0, 1) =~ 1.
Since A, and A, are still negative, further improvement of x5 is possible.
Step 2. Determination of the entering vector a.Ez) .
The entering vector a2 corresponds to such value of k which is obtained by the cirterion

.

. . 6 16 3
Ay=min [A;, Ag ,A7,A4]=mm[-—7,-7—,;,— 1]=— 1=A4. Hence k=4.
Sointroduce a.,(z) .
Step 3. Determination of the leaving vector B,(Z) , given the entering vector @
10 1 00 1 1
o ol @ 1 1677 3/7 0 || -1 -1
Compute X, 7=B; a7 =| 0 0 5/7 - 3/7 0 0 |=| O
. 00 -1/77 271 0 0 0
00 -97 47 1 1 1
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After completing the column X,*’ = X® in Table 619 » add one more column for minimum ratio rule. Minimum
ratio rule indicates that T TTis the key element. Hence remove the vector Bs? from the basis.

Step 4. Determination of next improved value of x5 .

Introduce a4<2) and remove B3(2) » to obtain the following transformation table.

Table 620 Additional Table (6-20)

Variables ! X.?) Min.
inthe basis| ¢ e . g?P P pP X2 (k=1) | Ratio a?  al® W a@®

' Xp/Xk

; k=1
z 1 0 .+ 16/7 -4/7 -l 90/7 ~6/7 -1 0 0 0
- T 0 .1 LS B N S S ¥s=O(mote) | 0 .1 i - 0 0 0
x 0 0 v 57 =31 0 1577 -7 = 1 1 0 0
x3 0 0 | -7 277 0 25/7 3/7 | 2573 2 0 I 0
x4 0 0 -9/7 477 1 15/7 6/7] 15/6 « 1 0 0 1

|

1 T ’ v x x x

Since the maximum value of x5 becomes zero, consequently other artificial variables xg , x; , xg also

become zero. Hence phase I ends at this stage. Cross (X) the artificial vectors aéz) , a7(2) , aéz) from the
additional Table (6-20)’ as the process of Phase I is now complete.

Now enter Phase Il to maximize 7 (not xs).

Phase II. First, test whether the value z = 90,/7 [as obtained in Table (6-20)] is maximum.

Step 1. Computation of A; for af? only (i.e. A)).

A, = (first row of B;") (a”) =(1,0, 16/7, - 4/7, - (=1,-4,1,2,1) =—g (Note)

There is no need to compute Ag , A7, Ag; because the corresponding artificial vectors aéz) , 37(2) ,and aéz)
have been ignored from the additional Table (6-20)".

Since A, is negative, Table 6-20 does not give optimum solution. Hence proceed to improve the solution :
2=90/7,x,=15/7,x=25/7 ,x,=15/7.
Step 2. Determination of the entering vector a.fz) . -
The entering vector aéz) corresponds to such value of k which can be obtained by the criterion :
Ay=min. (A;)=A;. Hence k=1.

So we must enter al(z) .

Step 3. Determination of the leaving vector, given the entering vector a> .
1 0 16/7 -4/7 -1 -1 -6/7
01 1 1 1 4 0

Compute XP=8"a®={0 0 57 =37 o|x| 1|=|-ir
0 0 -177 2/7 0 2 377
00 -97 477 1 1 6/7

After cumpleting the column X% = x,? in Table 6.20, add one more column for minimum ratio rule
which indicates that[6/7] is the key element. Hence remove B5? from the basis.
Step 4. Determination of the improved solution.
pplying usual rules of matrix transformation to obtain the following table of improved solution.

(]

) Table 6-21
Vanable_s inthe € e : B B2 P x? x® a?
z 1 0 ; 1 0 0 15 0
S S S L. LU LA S LU AU e S 0
X3 0 0 ; 3/6 -2/6 1/6 572 1
X3 0 0 , 3/6 ’0 -3/6 572 0
X} 0 0 ! -9/6 -4/6 7/6 572 0
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Test whether the solution x; = x; = x3 = 5/2 , z = 15 is optimum or not. For this, compute
A, = (first row of B3 ") (a{?) = (1,0, 1,0, 0) (0, 0, 1, 0, 0) = 1 (whichis positive)
Hence the optimum solution is obtained as : x; =x; = x3 = 5/2 ,max.z=15.

[ 6.12. MORE EXAMPLES ON STANDARD FORM - 1i

i

Example 6. Solve the following problem by revised simplex method :
Min.  z=x, +2x,subjectto  2x;+5x,2 6, x; +x, 2 2, and x;,x20
Solution. Converting the objective function of minimization into maximization, we get
Max. 7 =—x;—2x,,wherez' =-z.
Now, writing the given problem in the proper form

[Meerut (TDC) 80}

Z+x+ 2% = 0
—3x;— 6xy+x3+ X3+ X5 =—8
23, + 5% X3 +xg - 6 where x5 = — (xg + x7)
X+ x — X4 +x7 = 2.
Next, express this system of constraint equations in matrix form as follows :
s
WP 2P a? P o a0 o |
2 2 X2
(ey) @@ || | 9
i1 1 2 0 o0 0 0 O X |= ‘g
0 -3 -6 1 1 1 0 O x 5
0 2 5-1 0 0 t O 5
0o 1 1 0-1 0 0 1 *6
L *7]
Now enter Phase I.
Phase I. In this phase, maximize x5 (not Z’) and form the following table for first iteration.
Table 622 ) Additional Table
B:!
Variables | ¢ € | B2 B x? x® a® a?® a? a?
in the basis ; (k=2) | Min.Ratio
z 1 0 I 0 0 ] 2 (Xp/X2) 1 2 0 0
xs 0 b 0 0 -8 -6 -3 -6 1 1
" 0 0 I 1 0 6 3] 6/5 2 5 -1 0
x7 o 0,0 1 1 2/1 1 1 0 -1
{ T
First Iteration
Step 1. Computation of A for al® ,a® ,a{” ,a", i.e, A1, Az, Ayand By
p 1. Computation of foray” ,ap” , a3 ,a4 7, Le, A, Az, 3a .

A, = (second row of B; ") (a?) =(0,1,0,0) (1,-3,2, ) ==3,4=(0, 1, 0,0)(2,-6,5,1)=
A3=(0,1,0,00(0,1,-1,00=1,4=(0, 1,0,000,1,0,-1)=1.
Step 2. Determination of the entering vector a'sz) .
The entering vector a.ﬁz) corresponds to such value of k which is obtained by the criterion
Ay =min. [A;, Ay, Az, Ay), = min. [-3,-6,1,1]=—6=A;.Hencek=2.
So the entering vector is determined to be az(z) , xo will be the entering variable.

Step 3. Determination of the leaving vector B ,(2) ,given the entering vector az(z) .

First, compute X2 corresponding tothe entering vector 82(2) .

-6
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10007 2 2
@_p-1,@_(01001|-6]]-6
X"=BaT=10 01 o sIF s

000 1] 1 1

Now, it is possible to complete the column X =X of Table 6-22.

Apply the min ratio rule within Table 6-22. This rule shows that E is the ‘key element’ corresponding to
which Bl(z) [aéz)] must be removed. Hence xg will become the departing variable (xg will have the value zero at
the next iteration). '

Step 4. Determination of first improved value of x5 .

In the following first intermediate coefficient matrix, apply the usual rules of transformation, to obtain the
second matrix

@ B X x
0 0 0 2 -2/5 0 -12/5 0
0 0 -8 -6 6/5 0 -4/5 0
1 0 1/5 0 6/5 1
0 1 1 -1/5 1 4/5 0
and construct Table 6-23 for second iteration.
Takie 623 Additional Table
Variables in B; 1 ka
the basis Pl Min. Ratio a® al? a® ad?
& e | p@ e X2 (Xp/Xy)
z 1 0 | -5 0 -12/5 1/5 1 0 0
_____ B0 jes o Lows L | ] ] s !
-x 0 I 1/5 0 6/5 2/5 g /§ -3 2 1 -1 0
“x 0o o -1/5 1 4/5 3/5 g/g%‘_ 1 0 0 -1
T
Here x5 =—4/5 . Now enter the second iteration.
Second Iteration
Step 1. Computations of A for al(z) , aéz) s a3(2) , a4(2) sie (Ay,A¢,A3,Ay) .
A=(0,1,6/5,0)(1,-3,2,1)=-3/5, As=(0,1,6/5,0)(0,0,1,0)=6/5
A3=(0,1,6/5,0)(0,1,-1,0)=~1/5, A4=(0,1,6/5,0)(0,1,0,-1)=1.
Step 2. Determination of the entering vector a,> .

To find k, we have
Ay=min. [A;, A, A3, Al =min. [- 3/5,6/5 ,—=1/5,1]1=-3/5=A,. Hencek=1.
Now enter the vector a.ﬁz) = al(z) . Hence, x; will be the entering variable.
Step 3. Determination of the leaving vector B,(z), given the entering vector a
Compute X,» corresponding to vector a2 .

10 -25 o 1 1/5
@_pg1a@_| 01 65 0| <3| | -3/s
XU=Bart=l 0 o s of 207 T
00 -1/5 1| 1 3/5

Compute the column X, = x? and apply the rule of min. (Xz/X,) in the last column of Table 6-23 . 1t is

found that 3/5 is the ‘key element’ which indicates that B2 [a;2] should be removed. Hence x; will be the
departing variable.
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Step 4. Determination of the second improved value of xs .
The intermediate coefficient matrix is given below. Applying the usual rules of matrix transformation, get the
second matrix.

p® B2 xP x®
-2/5 0 -12/5 1/5 -1/3 -1/3 -8/3 0
6/5 0 ~4/5 -3/5 1 1 0 0
1/5 0 6/5 2/5 173 -2/3 2/3 0
-1/5 1 4/5 3/5 -1/3 5/3 4/3 1
Now table for improved value of xs becomes :
Table 6-24 Addl. Table
Variablesin | ¢ e | P @ x? | x@ a? @) 2D a?
! By B2 B k 7 as 3 4
Z i 0 | ~ 1/3 -1/3 -8/3 0 0 0 0
I - SRR (NS S IS SR SR S| A U - 0 0 1 !
X2 0 0 | 173 -2/3 2/3 0 1 -1 0
= x| 0 0 | —-1/3 5/3 4/3 1 0 0 -1
X X

Since max. x5 = 0 , we enter Phase II to maximize Z instead of x5 . Artificial column vectors a-,(2 ) and aéz) in the
additional table, may be overlooked.
PhaseIl.
Step 1. Computations of A; for a3(2) and a,,(z), ie Ay, A\
As = (first row of B3 ) (af?) =(1,0, - 1/3,- 1/3) (0, 1, 1,0)=1/3.
Ay = (first row of B; ) (@) =(1,0,-1/3,-1/3)(0,1,0,-1)=1/3.
Since A; and A, are positive, the solution
x1=4/3 ,x%,=2/3,7 =-8/3 (z=18/3),isoptimal.
Note. Do not compute A7 , Ag here, because there is no need to consider the corresponding artificial vectors a? and ad> for
Phase |l.
Example 7. Solve the following problem by revised simplex method.
Min. z=2x, + x; , subjectto 3x; +x, < 3,4x;+3x; 2 6,%+2x; < 3,x,x 20.
Solution. Converting the objective function from minimization to maximization,
max.z =—2x; —x; ,WhereZ =~ z.
The system of constraint equations suitable for standard form II will become

7+ 27C1 + Xy = 0
=8 -t xatxs ==12
. 3x; +xz + Xg = 3 _i
x4 3 —x T +x T =6
X1 + 2%, + x4 + xg = 3.

Note. The artificial variable xg is introduced together with the slack variable X, in the last equation to obtain the basis matrix B8,
as identity matrix.
Expressing the system of constraint equations in matrix form:

4

-2
@ @ @ ., o @ @ @ M
a a; a a3 a4 3 3 J A

2 @ RG

2

X2
X3
X3|=
X5
X6
X7
Xg~

N WP

a
B
0
0
0
1
0

cCoo~O9
OO = OO .S
'—'OOOOF

and enter Phase L.
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Phasel. In this phase, maximize xs (not 2°). Construct Table 6-25 for first iteration.

Table 6-25 Additional Table

Variables B;! Min 3P o WP 0@
in the basis ™~ & : B? 8P P | x@ | x D=1 (ﬁ) 2 1 0 0
4 1 0 0 0 0 | o 2 X 8 -6 1
.- SO S S I 0O .0 |- | 8 | | 3 1 0 0
x5 0 01 0 0 3 33 4 3 - 0
x 0 0, o 1 0 6 4 6/4 1 2 0 1

xg 0 0 ; 0 0 1 3 1 3/1

1 T
First Iteration

Step 1. Computation of A for al(z) ’ az(z) , a;,(z) ’ a4(2), le. Ay, Ay, A3, Ay,
A = (second row of B;") (a;”) = (0, 1,0,0,0) (2, - 8, 3,4, 1) = — 8;
A=(0,1,0,0,0)(1,-6,1,3,2)=—6;
43=(0,1,0,0,0)(0,1,0,—-1,0)= 1; A4=(0,1,0,0,0)(0,-1,0,0,1)=—1.
Step 2. Determination of the entering vector aéz) . V
The entering vector aéz) corresponds to such value of k which is obtained by the criterion
Ay=min. [A;, Ay, A3, Ayl,=min. [-8,—6, 1, - 1]=—-8=A,. Hence k=1.
So enter al(z) , that is, x; will be the entering variable.
Step 3. Determination of the leaving vector B,(z) » given the entering vector al(z) .

First, compute X,(Z),corresponding to the entering vector a,w .

10000 2 2
01000/-8]]|-8
XP=B;"a®={00100] 3| 3
00010 4|/ a
0000 1] 1 1

and complete the column x,fz) = xl(z) of Table 6-25 .

Apply the minimum ratio rule in Table 6-25 . This rule immediately gives the key element 3 corresponding to
which the vector Bl(z) , that is, a.;(z) must be removed. Hence xg will become the departing variable.

Step 4. Determination of the firstimproved value of xs.

Consider the intermediate coefficient matrix as follows. Then apply the usual rules of matrix transformation to
obtain the second matrix.

O mP x® xp
0 0 0 0 2 -2/3 0 0 -2 0
0 0 0 -12 8 8/3 0 0 -4 0
1 0 0 3 1/3 0 0 1 1
0 1 0 6 4 -4/3 1 0 2 0
0 0 1 3 1 -1/3 0 1 2 0
Construct Table 6-26 for second iteration.
Table 626 Additional Table
B; o
Varaibles | ¢, e B I(Z) ;32(” 33(2) Xéz’ Xk(z) Min, Ratio 36(2) a;m ‘3(3) a 4(2)
in the basis _ Rule:
k=2)
4 1 0 -2/3 0 0 -2 1/3 Min 0 1 0 0
L% 00 188 0 0 | -4 -10/3 ] Xp/Xy) 0 -6 1 -1
-x |0 O /2 ) 0] 173 il 1 1 0 0
3 0 3. -1 0
“ X3 0 0 -473 1 0 2 5/3 2/54 0 5 0 1
X3 0 0 -1/73 0 1 2 5/3 2/54 x X
3

Here x5 = ~ 4 . Therefore, enter the second iteration.
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Second Iteration

Step 1. Computation of A, for aéz) ,as?, a3(2) , a4(2) de AN, Ay Az, Ay
Ag = (second row of B ") (a¢?) = (0. 1,8/3,0,0) (0,0, 1,0,0) =8/3
A,=(0,1,8/3,0,0)(1,-6,1,3,2)=-10/3, A;=(0,1,8/3,0,0)(0,1,0,-1,0)=1
Ay=(0,1,8/3,0,0)(0,-1,0,0,1)=~1.

Step 2. Determination of the entering vector a? .

The value of k to obtain a.Ez) is determined by the criterion

A, =min. [Ag . A; , Ay, Ag) =min. [8/3,-10/3, 1, - 1] =-10/3 = A,. Hence k=2 . So introduce a® .
Step 3. Determination of the leaving vector [3,(2) , given the entering vector a? .
First, compute X2 corresponding to the entering vector a 2 . Therefore,

10 -2/3 0 o] 1 13
i 01 83 0 of -6 103
xP-8;'a®=l0oo0o 13 00| 1|= 1n
00 -43 1 of 3 /3

00 -1/3 0 1]| 2 5/3

Now complete the column X2 = x{? of Table 6-26.

Apply minimum ratio rule in the last column of Table 6-26 . It is found that the minimum ratio of (xg;/x2)
is not unique but occurs for i = 2, 3 . So we face the problem of degeneracy at this stage. Here it is necessary to
resolve degeneracy in order to prevent cycling. Therefore, to find the unique minimum ratio apply the
Charne’s Perturbation Technique as discussed in Chapter 3.

From Table 6-26 , compute
min aiil = min azi i)\ =min =4/3 -1/3 =min [-4 -4H=-4
i=2.3 %2 xp Xn| 5/3° 5/3 | 575 5°

Since the minimum is unique and attained at i = 2 , the vector to be removed will be [32(2) .

Step 4. Determination of the second improved value of xs .

Consider the intermediate coefficient matrix as given below. Apply usual rules of matrix transformation
to get the second matrix.

B> By Bs” X X
-2/3 0 0 -2 173 -2/5 -1/5 0 -12/5 0
8/3 0 0 -4 -10/3 0 2 0 0 ]
173 0 0 1 173 3/5 -1/5 0 3/5 0
~4/3 i 0 5/3 - 4/5 3/5 0 6/5 1
-1/3 0 1 5/3 1 -1 1 0 0
Construct Table 6-27 for next iteration.
Table 6-27 Additional Table
aribes [e e g0 g PP D & AP e e
4 1 0 i -2/5 - 145 0 -12/5 0 0 0 ) 0
______ wo |0 vjoo 2o Lol ] o o 1
X1 0 0 i 3/5 -1/5 0 3/5 i 0 0 0
-3 X7 0 0 i -4/5 3/5 0 6/5 0 1 -1
xg 0 0o 1 -1 1 0 0 0 0 1
X X
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Here maximum x5 comes out to be zero. Hence enter Phase II to maximize 7’ . Also cross out the artificial
vectors ad® and a;” from the additional table at this stage.
Phase IL. Step 1. Computations A, for agz) anda® .
Ay = (first row of B; ) (a3”) = (1,0,-2/5,-1/5,0) (0, 1,0, 1,0) = 1/5;
A4=(1,0,-2/5,-1/5,0)(0,~1,0,0,1)=0.
Since Ay, and Ay are > 0, the solution is : x, = 35, x;=95,7 =— 1% (hence z = 12/5) is optimal.

Flowchart of Revised Simplex Method : Standard Form—I

Formulate the Construct the
given problem in starting table in
revised simplex revised simplex
Jorm by con- Jform, and form
sidering the ob- the additional
Jjective function table for those
as an additional a;’s which are
constraint not in the initial
basis matrix
Find the impro-
ved solution Compute the
table removing net evaluations
the leaving A;=(first row
variable and ofB;')x (ajm
introducing t{le not in the basis)
entering varia-
ble in the usual
manner \
Is there any 4 Solution under
Ngggative test is optimal
Find the key
element corres- l Yes
ponding to the Choose the min
lea.ving and en- A;. The non-
tering vectors basic vector
corresponding to
itis the entering
vector
Solution can X."=8;"a/"
be improved.
apply min ratio
rule :
min ﬁ, X, > 0)
Xy No ompute
to find the lea- the components Yes Solution is
ving vector of the entering vector unbounded

X,fl). Are all of them

negative ?,
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Further, A4 being zero shows that the problem has alternative optimal solutions.

EXAMINATION PROBLEMS

1. Min. z=x; + X2, subjectto 2. Using artificial variables, solve by revised simplex method :
X1+2x 27 Max. z=-2x; — 4x; — X3 , subject to
4x1+X 2 6 Xy +2% —X3 £ 5,2X1—Xo+2X3 = 2, - X1 +2)X+2x3 2 1
X1,X 2 0. X1,X,X3 2 0.
[Delhi, B.Sc. (Math.) 89, 87, 77; Raj. v} [Ans. x;=1/2,%=0.<x3=2/3,2x=-4/3.
[Ans. x; =5/7 , %2 =22/7 , min. 2=27/7) Alternative solutions also exist).

[ 6.13. ADVANTAGES AND DISADVANTAGES

Advantages :
1. The method automatically generates the inverse of the current basis matrix and the new basic feasible
solution as well.
2. It provides more information at lesser computational effort.
3. It requires lesser computations than the ordinary simplex method.
4. A less number of entries are needed in each table of revised simplex method.
5. The control of rounding-off errors occurs when a digitial computer is used.
Disadvantages :
In solving the numerical problems side computations are also required, therefore more computational

mistakes may occur in comparisor: to original simplex method.
Note. Students are advised to prepare a flow-chart for standard form-Ii.

Q.

1. Compare the revised simplex method with simplex method and bring out the salient points of differences.
2. What are the advantages and disadvantages of revised simplex method over the original simplex method.
3. When a revised simplex method is advantageous ?

6.

SELF-EXAMINATION PROBLEMS

Formulate a linear programming problem in the form of revised simplex.
Develop the computational algorithm for solving a linear programming problem by revised simplex method.
Use revised simplex method to solve :

Max. z=3x; + 5x 4. Max.z=Xxy+ X2 +3xX3 5. Max. z=5x; + 3%z,
subject to the constraints : subject to the constraints : subject to the constraints.
X1 < 4 3x;+2%+x3 < 3 4x;+5x 2 10
Xp £ 6 2X1+ Xp+ 2% < 2 5x1+2x < 10
3x;+2x < 18 X1, X% ,X3 2 0. 3x; +8x; < 12
Xy, % 2 0. X1, 2 0. )

[Ans. x; =2, x; = 6, max. Z= 36] [Ans. x; =x=0,x=1,max. z=3]}. [Ans. x; = 28/17 , X =15/17 , max. z= 185/17]
Min. Z=3x1 + X2 7. Min. z=4xy +2x, + 3x3, 8. Max. z=xy +2x + 3X3 + 4x4 ,
subject to the constraints : subject to the constraints : subject to the constraints :

X1+ Xp 2 1 2xy+4x3 2 5 3x1+2x+3x3— X4 < 25
2x14+ X 2 0 2x1+4x2+ X3 2 4 -2X1+X2—-2X3~X 2 5
Xy,Xp 2 0. Xy,X%,X320 2x1+ 2%+ X3+ X4 2 0
[Ans. x; =0, x;=1, min. z=1]} [Ans. x; =0, x=11/12, X1,X%,X3,X%X 2 0.
X3=5/4, min. z=67/12]. . [Ans. x; =Xo =X3=0, X4 =20 , max. z= 80}.

10.

Max. z=6x; — 2x2 + 3X3, S.1.2X; — Xo + 2X3 <2, Xy +4x3< 4,and X1, X2, X32 0.

[Ans. x; =4 ,x=6,x3=0,z=12]

If the factory receives an inquiry about the possibility of producing a fourth product D which calls for one hour each of cutting
and assembleing time, and 2 hours of grinding time per unit and would contribute a profit of Rs. 3 per unit, should the order be
sguglht aﬂttef: gdlf s0, how much of the fourth product D should the factory promise to deliver ? Solve the problem using revised
simplx method.

e de K



DuaLITY IN LINEAR PROGRAMMING

[ 7.1. INTRODUCTION : CONCEPT OF DUALITY ]

One of the most important discoveries in the early development of linear programming was the concept of
duality and its division into important branches. The discovery disclosed the fact that every linear
programming problem has associated with it another linear programming problem. The original problem is
called the “primal” while the other is called its “dual”. It is important to note that, in general, either problem
can be considered the primal, with the remaining problem its dual. The relationship between the ‘primal’ and
‘dual’ problems is actually a very intimate and useful one. The optimal solution of either problem reveals
information concerning the optimal solution of the other. If the optimal solution to one is known, then the
optimal solution of the other is readily available. This fact is important because the situation can arise where
the dual is easier to solve than the primal.

7-1-1. Concept of Duality in Linear Programming.

In order to make the concept of duality clear, we consider the following diet problem of our common
interest.

The amounts of two vitamins vy and v, per unit present in two different foods F\ and F, respectively are
given in the following table :

Food Minimum Daily Require-
Vitamin F, F, ment (units)
V) 5 7 80
V2 6 11 100
Cost per unit Rs. 10 Rs. 15

The problem is to determine the minimum quantities of two foods Fy and F, so that the minimum daily
requirement ‘of two vitamins is met and that at the same time, the cost of purchasing these quantities of
Fy and Fy is minimum,

To formulate this problem mathematically, let x; and x2 be the number of units of food F; and F, to be
purchased respectively. The problem is to find the values of xpand x;soas:

To minimize z, = 10x, + 15x,
subject to the constraints :
le + 7X2 > 80
6xy + 11x; > 100
and X1,X% 2 0

Here in the formulation of the problem, we have assumed that taking more than the minimum
requirement is not harmful, and purchase of negative quantity is meaningless. This LPP will be considered as
the primal problem.

Now associated with the above problem, we can consider a different problem.
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Suppose there is a wholesale dealer selling two vitamins v, and v, along with some other commodities.
The retailers purchase the vitamins from him and from the two foods F and F; (as given in above table). The
dealer knows very well that the foods F, and F, have their market values only because of their vitamin
contents. The problem of the dealer is to fix-up the maximum per unit selling prices for the two vitamins
v and v, in such a manner that the resulting prices of foods Fy and F, do not exceed their existing market

prices. )
To formulate this problem mathem=tically, let the dealer decide to fix-up two prices wy and w, per unit

respectively. The dealer’s problem is to determine the values of w; and wp so as :

To maximize z,, = 80 w; + 100 w,
subject to the constraints :
_5w1 + 6W2 <10
7w1 + 11W2 <15
and Wi, W3 20.

This associated LPP is considered as the dual of the given primal.

We abserve that both the above problems are symmetrical in the following sense :

(i) The costs associated with the objective function of one problem are just the requirements in the
other’s set of constraints.

(ii) The .constraint coefficient matrix associated with one problem is simply the transpose of the
constraint coefficient matrix associated with the other.

However, one of the problems is a maximization problem while the other is a minimization problem.

The obove primal dual construction relationship can be more easily understood by the following diagram :

Primal Problem Dual Problem

10x, + 15x, 80w, + 100w,
Subject to the constraints : ' Subject to the constraints :

T

v — K’

5x, + Tx, >

[
=]
A
—
o

6x, 11x, 100
jad i —

X, %20

Q. 1. Explain the concept of duality.
2. Discuss relationship between primal and its dual.

The concept of a dual problem formulation has often proved useful in science and engineering. Circuit
theory, economics, and game theory are other examples of such cases. The dual linear programming problem
has been, and continues to be, a powerful tool in the analysis of linear programming and related areas.

7.2. DEFINITION OF PRIMAL-DUAL PROBLEMS ]

7.2-1 Symmetric Primal-Dual Problems

Let us consider a linear programming problem in the following form, which may be called the symmetric
primal problem.
Primal Problem : Findx, ,x;,x3, ..., X, ,which maximize z, = c1x; + ¢;%3 + ... + Cpxy, subject to
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apiX; +a12x2+ +a1,,x,, < b] N
anxitanx+t..+ayx,<b,

Ap1X) + AppXy + ...+ QX S by, «(7-1)
and X1 X350, %, 20
where the sign of all parameters (a , b , ¢’s) are arbitrary.

The dual of the above problem is obtained by,

(i) transposing the coefficient matrix ;

(i) interchanging the role of constant terms and the coefficients of the objective function ;

(iii) reverting the inequalities ;

(iv) minimizing the objective function instead of maximizing it.

Dual Problem : Find wy,w,,ws, ... W, ,whichminimize z,,= b;w, + bywy + ... + b,w,, , subject to
apw) +a;wy+ ... +a,,,1w,,, 2 (]
apwy+apwy+ ...+ apw, 2 ¢,

: : : : (72)
aypw +aywr + ... +a,,w,
and Wi, wy, o, w, 20,
Thus, by definition, (7-2) is the dual of (7-1),and w; , w, , w3 ..., w,, are called the dual variables.
The primal-dual relationship may be remembered more conveniently by using the following table :
(x1,...,%,)  Min.

2
2

wi
apn ... Qpy b]
D) . <
: a a b
Wy ml mn m
2
Max. (Cl,...,Cn)

Primal constraints should be read across the table while dual constraints should be read down the columns.
An example of a symmetric primal and its dual is given below x;
Primal Problem : Max. z,=3x, +5x, ,subjecttox) <4, x,<6,3x;+2x,< 18, andx, , X 20,

The corresponding dual problem is the following :
Dual Problem : Min. z,=4w; + 6w, + 18wy, subjectto w,+3w3 23, wy + 2ws 2 5and wy, wy, w3 2 0.

7-2-2 Matrix Form of Symmetric Primal and Its Dual
Priral Problem. Find a column vector X € R”, which maximizes 2, =CX, C € R"(primal objective function)
subject to
AX<b,be R" ,x>0. .(73)
where A is an m X n real matrix. .
Dual Problem. Find a column vector W € R™, which minimizes z,, = b'wW,be R" (dual objective function)
subject to
A'w2c',ceR', w=0, . (74)
where W=(w,,w,,...,w,) and AT R b* ,C" are the transpose of A, b,and C (given in the primal)
respectively.

7-2-3 Unsymmetric Primal-Dual Problems

Primal Problem. Find a column vectorX € R", which maximizes z,=cCX,Ce R’ subject to

AX=b,Xx>0,be R"
where A is an m X n real matrix.
Dual Problem. Find a column vector W € R™, which minimizes z,, = b'w, subject to ATw>(CT".
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The final table of the primal problem indicates that the marginal value of raw material A is Rs. zero; for B
is Rs. 10 per unit; and for Cis Rs. 10 per unit. Thus if the manager sells the raw materials A , B and C at price
Rs. 0, Rs. 10 and Rs. 10 per unit respectively, he will get the same contribution of Rs. 1050 which he is going to
fetch in case he utilizes these resources for production of the three products X , Yand Z..

Example 14. XYZ manufacturing company operates a three-shift system at one of its plants. In a certain
section of the plant, the number of operators required on each of the three shifts is as follows :

Shift Number of operators
Day (6 a.m. to 2 p.m.) 50
Afternoon (2 p.m.to 10 p.m.) 24
Night (10 p.m. to 6 p.m.) 10

The company pays its operators at the basic rate of Rs. 10 per hour for those working on the day shift. For
the afternoon and night shifts, the rates are one and a half times the basic rate and twice the basic rate
respectively. In agreement with each operator at the commencement of his employment, he is allocated to one
of three schemes A, B, or C. These are as follows :

(A) Work (on average) one night shift, one afternoon shift, and two day shifts in every four shifts.

(B) Work (on average) equal number of day and afternoon shifts.

(C) Work day shifts only.

In schemes A and B, it is necessary to work strictly alternating sequences of specified shifts, as long as the
correct proportion of shifts as worked in the long run.

(i) Formulate a linear programming model to obtain the required number of operators at minimum cost.

(ii) By solving the dual of the problem, determine how many operators must be employed under each of

the three schemes. Does this result in over-provision of operators on any one of the three shifts ?
[Bombay (M.M.S.,) Nov. 98]

Solution.
Primal problem : Dual problem :
Minimize Z =20 X 5 % + 15 (%xl +3% J Max. Z" = 10y, + 24y, + 50y,
+10 (%xl +%XZ +X3)
55 25
=Tx1 +E‘X2+ IOX3
subject to the constraints , subject to the constraints
1 1 1 1, <5
g 210 antantyys sy
1 1 1 1 25
1 1 > 1 1 < =2
PRI > 24 Sty s
%x1+%x2+x3 2 50 V3 <10
Y1,¥2,y320
x1,%,x 20 where y, ,y, , y3 are shadow prices (or worth)
; per unit of resources— operators in three shifts
where x; , x5 , x5 are number of operators respectively
employed under scheme A, B and C respectively.

The dual problem can now be solved by using simplex method after introducing slack variables
51, 52 and 53 in the above constraints as follows :

Max.Z = 10)’] + 24)’2 + 50_}’3 + O.Sl + O..S'z + 0.S3
subject to the constraints
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1 1 1 55
Nttty =
1. .1 _ 25
2y2+2y3+52— 2

y3+s3 =105 y;,y2,¥3,51,5,,53 20

from the final simplex tableau, the optimum solution to the primal problem is read as :

and the minimum total cost =

Xy = 40, X2 = 28, X3 = 16

§4§x4o+325-x28+10x16 = Rs. 1,070.

EXAMINATION PROBLEMS

Use principle of duality to solve the following LP problems :

1.

2.

9.

10.

Max, z=3x;+2% ,8t.2X+X% < 5, X+X% < 3,X,% 2 0
[Ans. xy=2,x=1,max.z=8;wy;=1, w,=2, min. z,=8).
Max. z=x1+6x3,8t. X1+ X% = x;+3% < 3;x,% 2 0.
[Ans. x1=3/2,x%=1/2,max. z=9/2; w;=3/2, w, =5/2, min. z,= 9/2].
Min. z=2x+2x,84.2x+4X% 2 1,q+2% 21, 2q+X% 2 1;x1,% 2 0.
[Ans. x1=1/3,x%=1/3, max. z=4/3].
Max: z=3x1+4x,St.X1-X% < 1,X+X% 24,X,3% <3, 3<% 20.
[Ans. Since the dual problem does not possess any optimum basic feasibie solution,
hence there exists an unbounded solution to the primal problem].
Max.z=2x1+ X2, 8t x+2x S 10, X1+ X% S 6, X-X% S 2, -2X% S 1;X,% 2 0.
[Ans. Xx1=4,x=2,max. z=10].
(a)Use simplex method to maximize z=5x - 2y + 3z, subject to the restrictions :
2x+2y-2z 2 2,3x-4y < 3,y+3z < 5,where x, y, z, are non-negative variables.
(b) Verify your solution using the dual of the problem given above.
[Ans. x=23/3,y=5,z=0,max. z=285/3).
Apply simplex method to solve the following :
Max. z = 30x; + 23X + 29x3 , subjectto, 6x; +5x + 3x3 < 26 ; 4x; + 2X0 + S5x3 < 7,everyx; 2 0.
Also read the solution to the dual of the above problem from the final tableau.
[Ans. x;=0,x=7/2,x3=0,max. z=16/2 ; for dual problem: wy = 0, wp = 23/2 ; min. z,,= 161/2).
Apply the principle of duality to solve the LP problem :
Max. z=3x; + 2xz , subjecttothe constraints 1 xy + X2 2 1,x1+X S 7,X+2% < 10, % < 3; X, X2,2 0.
[Ans.- Fordual:w;='0,w,=3,w3=0, ws=0andmin.z=21; Forprimal: x; =7, x;=0, max. z=21).
Solve the dual of the foilowing problem by the simplex method :
Max. z=2x1 +3x2+5x3,8.t. X4+ X2+ X3 < 7, X +2X%+2X; < 13, 3x1-X+Xx3 S 5,andx;,X,X 20.
A diet conscious house wife wishes to ensure certain minimum intake of vitamins A, B and C for the family. The minimum
daily (quantity) needs of the vitamines A, B and C for the family are respectively 30, 20 and 16 units. For the supply of
these minimum vitamin requirements, the house-wife relies on two fresh foods. The first one privides 7, 5, 2 units of the
three vitamins per gram respectively, and the second one provides 2,4,8 units of the same three vitamines per gram of
the food stuff respectively. The first food stuff costs Rs. 3 per gram and the second Rs. 2 per gram. The problem is how

many grams of each food stuff should the house wife buy every day to should the house wife buy every day to keep her
food bill as low as possible ?

(i) Formulate the underlying L.P. problem (ii) Write the ‘Dual’ problem (jii) Solve the ‘Dual’ problem by using simplex
method. (iv) Solve the primal problem graphically. (v) Interpret the dual problem and its solution.
[Ans. (i) Min. z=3x;+2x;, 5.t 7x; +2x; 2 30,5x; + 4% 2 20,2x;+ 8% 2 16,and x, X2, X3 2 0.
(i) Max. zy=30w; + 20w, + 16ws , S.t. 7wy +5wp + 2ws < 3, 2w, +4wa +8wg < 2,and wy,wo, w3 2 0.
(i) wi=5/13,w=0,w3=2/13, z,=14. iVixy=4,x%=1,z=14,

-7.8. MORE WORKED EXAMPLES I

Ekample 15. Apply simplex method to solve the following:

Max. z,=30x, +23x; + 29x3 , subject to
6x; +5x, +3x3 €26, 4x;+2x,+ 6x3< 7, and allx;20.

Also read the solution to the dual of the above problem from the final table.
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Solution. Introducing slack variables s, and s, , the given problem becomes:
Max. z, = 30x; + 23x; + 29x3 + 05 + Os; , subject to

6X1+5X2+3X3 +5 =26
4x1 +2x; + 5x3 +55 =7,
and X1, X2, X3, Sl,Szz 0.
We now give below the successive tables for the solution of this problem by simplex method. The students
are advised to verify themselves.

Simplex Table
- 30 23 29 0 0

Basic Cp ‘X X X, X3 S S: Min. Ratio
Var. (Xp/X1)

5] 0 26 6 5 3 1 0 26/6

5 0 7 2 5 0 1 7/4

2= CpXp=0 -301 (=23 -29 0 0d A
5 0 3172 2 PRy 1 -3n 31/4
x| 30 7/4 1 172 5/4 0 1/4 1/2
2= CpXp = 105/2 ol -87 17/2 0 15/2 A
5 0 17/2 -4 0 -19/2 1 -5/2
x3 23 172 2 1 5/2 0 172
z:=CpXp 16. 0 5772 0 23/2 <4
=161/2

Thus, the optimal solution from the final table is given by

x=0,x%=7/2,x3=0;2*= 161/2.
To read the solution to the dual from the final table :
According to the rules as givenin Section 5-7-2 , the optimal solution to the dual of above problem will be

wl=A4=0,w2=A5=23/2,zx*=zw*= 161/2

In this way, we can find the solution to the dual without actually solving it.
Example 16. Use duality to solve the problem : Min. z,=x1 — X2, subject to

Wy +x22, —x—-x21, and x;,x20.
Solution. Obviously, the dual of given problem will be of the form :

max. z,, = 2w, + wy , subject to 2wy = w S 1,w;—wy<—1 andwy, wp 20.
We shall have lesser computational efforts in solving the dual rather than the original one. So first, we
shall express the dual in standard simplex form : '
Max. z,, = 2w} + w; + 0s; + Os, subject to
2wy —wy +5; =1
—wi+wy—s5 +a;=1.

We now apply two-phase method to solve it by simplex method.
Phase 1. To remove artificial variable ay, i.e., making ay non-basic

W W, W, Sy Sz At
1 2 -1 0 1 0
1 -1 1 -1 0 1

T l

2 1 0 -1 1 1

1 -1 i -1 0 1

~L Delete
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PhaseIL. To find optimal solution.
We shall obtain the following successive tables during the simplex procedure.

Basic Var. Cp Wg w; W, Si S Min. Ratio
(Wp/W))
52 0 2 (13 0 -1 1 2/1) «
wa 1 1 -1 1 -1 0 X
2, =CgWpg -3 0 -1 0 A
= T 4
wy 2 2 1 0 -1 1
wy 1 3 0 1 -2 1
z,* = CgWg 0 0 -4 3 — A
=4

Ay=CgS;~c4=(2,1)(1, D) -0=3,A,=CS,~ 3= (2, (=1,-2)-0=-4.
Since A; is —ve and all elements of vector $; (not in the basis) are negative, this indicates that the problem under

solution has unbounded solution. Consequently, by duality theorem, the original primal problem will have no
feasible solution,

Example 17. Use duality to solve : min.z, = 3xy + x, subject to x; + %21, 20+30,22, and x,, x> 0.
Solution. The dual of given problem will be of the form :
Max.z,, = 1w; + 2w, , subject to Wi +2w, <3, w; + 3w, <1, and wy,wy 20.
This problem can be easily solved by simplex method. Introducing the slack variables 51 and s, and proceeding
in the usual simplex routine, we get the following successive tables,

Simplex Table

¢~ 1 2 0 0
Basic Variables Cp Wg W, W, S: Sz Min. Ratio
(Wp/Wy)
51 0 3 1 2 0 3/2
52 0 1 1 3] 1 V3 e
Zy = CBWB -1 -2 0 0 «~ Aj
= T {
51 0 /3 173 0 ~-2/3 71
wy 2 173 1 0 1/3 1e
2w =CgWp ~1/3 0 0 2/3 «A
=2/3 T d
5 0 2 0 -1 1 -1
wy 1 1 1 3 0 1
Zy* = CgWg =1 0 1 0 1 A

Hence the optimal solution of the dual comesouttobew; =1 w, =0, with =1,
To read the solution of original primal from the final table : N=0M=0,0=0=1,z,= z=1.

EXAMINATION PROBLEMS
Use duality in obtaining an optimal solution, if any, to each of the following linear programming problems :
1. Max. z=8xy + 6x, subject to the constraints X1=X2S3/5, X1 - %22, and x4, Xz20.
[Ans. Dual problem does not possess a feasible solution)

2. Max.z=2xy + x, subject to the constraints : X1+ X222, %1+ 3% <3, and x,, X20.
[Ans. x; = 4, X =2; max z=10] :
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3. Max.z=x + 6x2 , subject to the constraints : X +X222,0+3%<3; x, % 20.

[Ans. x;=3/2, %,=1/2 ; max. z= 9/2)
4. Max. z=30x; + 24x, , subject to the constraints 1X1 42X > 80, — 2x; + X, < 10, X1 — X230, X1, %20

[Ans. Unbounded solution]
5. Max.z=2x; + x, subject to the constraints : X1+2X% <10, X1+ X < 6, Xy — X2, X1 -2%<1,%20,% 0.

TAns. x =4, X, =2,max. z= 10] - [Tamil. (ERON) 97; Kerala B.Sc. 90]
6. Min.z=-2x + 3x2 + 4x3, subject to the constraints : — 2X1+ %23, ~x1+3x+ X32~1, x1, X2, X320

[Ans. x; =0, % =3, X3=0, min. z=9]
7. Min.z=4x;+3x + 3x3, subject to the constraints : x; + 2X222,3x1 + X3+ X3 2 4, 4321, x5+ X321, X1, X%, X320.
8. Write down the primal problem to the following dual problem :

Max. Wy + Ws + Wy, subjectto 2W; + W, + 2W5 < 2, aWmi+2Wo + W2, W, Wo, W3 20.
[VTU 2002]

| 7.9. SHADOW PRICES IN LINEAR PROGRAMMING B

Let us consider the primal problem : Maximize z=CX, subject to the constraints AX = b ; X > 0,whereXandc e R”,
b e R” and A is an m x n real matrix. Also, letXg =B~ 'b be an optimum basic feasible solution to this primal
problem, where B is the optimal basis matrix. If Cg denotes the cost vector associated with basic variables, then

the optimum value of the objective function will be z* = CgXg=Cg (B~ ]b) .
Now we may define the shadow (or implicit or marginal) price p; of the ith resource b; (right hand side
value) to be the achievable rate of increase in resource i, as follows : '
dZ* ~1 »
a5, CBi B =X

_ m A A . _
where X" = Cg B 1= . Zl ¢Bi Bit» Pixbeing the kth column vector of B~ '
1=

Thus, X is the rate of change of the optimal objective function value with respect 1o b; and is called the optimal
dualvariable or simplex multipliers.

For several practical purposes, the calculation of shadow prices is more important than the solution of the
problem, because it permits the user to ensure whether certain potential changes in the model requirements might
actually increase the objective function.

For example, if one of the resources of a company represent the current production capacity of a particular
plant and the shadow price for this resource is greater than the actual unit cost increasing the capacity of the plant,
then the company could increase its profit by doing so.

Example 18. A firm makes two products A and B. Each product requires production on each of the two
machines : '

Machine Product Available
A B (in hours)
M, 6 4 60
M, 1 2 22

Total time available is 60 hours and 22 hours on machines My and M, respectively. Product A and B contribute
Rs. 3 and Rs. 4 per unit respectively.
.Determine the optimum product mix. Write the dual of this problem and give its economic interpretation.
Solution. Formulation of Primal and Dual Problems :
Primal Problem : Maximize z, = 3x; + 4x;, subject to the constraints :
6X] + 4x2 < 60, x|+ ZXZ < 22, and Xi 20, X 20,
where x, is the number of units of product A and x; is the number of units of product B.
Dual Problem : Minimize % =60 w; + 22w, , subject to the constraints :
6W1 +wy 23, 4W] +2W224, and wi 20, W:ZO R
where wy is the cost per hour on machine M 1, and w; is the cost per hour on machine M,.
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Optimum Solution to the Primal :
By usual simplex mathod, the optimum simplex table is given ahead:

¢ 3 4 0 0
Basic Var. CB XB Xl x; X3 X4
X 3 4 1 0 1/4 -172
X 4 9 0 1 -1/8 -3/4
z=Cp Xp=48 0 0 1/4 3/2

Thus the optimum solution is : x; = 4, x, =9 and max. profit=Rs. 48.
Using duality, optimum solution to the dual problem can be read directly from the optimum simplex table as
given by : wy = Rs. 0.25 per hour, w, = Rs. 1-50 per hour, and min. cost=Rs. 48.
Economic Interpretation of Dual : [1AS (Maths) 99]

As discussed above, shadow prices are the opportunity costs that indicate the potential profit that is lost by not
having an additional unit of the respective right hand side (resource) assuming that all right hand side values are
used optimally. Thus w; = 0-25 and wp = 1-50 means that additional processing hours on machine M; and M, will
increase the profit by Rs. 0-25 and Rs. 1-50, respectively.

Similarly in the primal problem, if we increase the total available hours on machine M, from 60 hours to 61
hours, the new set of constraints will be : 6x, +4x; <61 and x; +2x, < 22.

Solving the primal problem with new set of constraints, the optimum solution becomes :

x, =425 and x, = 8-875 with max z = 48-25 .

This is exactly Rs. (0-25)/1 =Re 0-25 more than the earlier value of z when only 60 hours of machine M; were

available.

Q. 1. Write anoteon dual prices and marginal valuation.
2. Explain briefly the economic significance of duality.

3. Give the economic interpretation of the dual problem assuming the primal programme to be a standard production
problem. [1AS (Math) 99]

4. Discuss the dual of a diet problem and give its economic interpretation.

[ 7-10. ADVANTAGES OF DUALITY }

The knowledge of the dual is important for the following main reasons :

(i) As seen from above worked examples, the solution may be easier to obtain through its dual than
through the original (primal) problem. This is true of cases in which the number of original variables
in the primal problem is considerably less than the number of slack or surplus variables.

(ii) Duality is not only restricted to linear programming problems but frequently occurs in economics,
’ physics, engineering, mathematics and other fields also.

(a) In economics, it is used in the formulation of the input and output systems. The economic
interpretation of the dual is found useful in making future decisions in the activities being
programmed.

(b) In physics, itis used inthe parallel circuit and series circuit theory.

(iii) In game theory, it is used to find the optimal strategies of the other player B when he minimizes his
losses. Then, by duality, we can change the player A’s problem into player B’s problem and
vice-versa. If we solve the problem for one player, the solution to the other can be easily read-off by
using duality properties.

Q. 1. Explain the significance of duality theory in linear programming. For a given LP problem state its dual and show that the
dual of the dual is the primal.

2. What are the useful aspects of duality in L.P.P.

v SELF-EXAMINATION QUESTIONS
1. Define the dual of L.P.P. State the fundamentat properties of duality and prove any one of them.
2. Let xo be any solution to the L.P.P. of maximizing z= cx subject to the constraints Ax=b and x = 0. if wg is any
solution of its dual, then show that woxg =0 ,where xg is the slack vector corresponding to Xg .
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. Write a short note on duality theory.

. Let xbe a feasible solution to the primal problem : Max. ¢’ x subjectto Ax < b , X 2 0;andYy feasible for its dual.
Prove that Max. ¢’k < Min. by .
If xx and y* be feasible solutions and ¢’ x* = b’ y* , whatis your conclusion ?

. Prove that if either the primal or the dual problem has a finite optimum solution, then the other problem has a finite
optimum solution and the extreme of the linear functions are equal, i.e. min. f=max. g. And hence show that if either
problem has an unbounded optimum solution, then the other problem has no feasible solution.

- State and prove (i) weak duality theorem (i) basic duality theorem and (jii) the fundamental duality theorem.
. Consider the following problems : Py :MaxCXsuchthatAX<b ,X>0;and P> : Min Wb such that WA > C, W > 0.
(@ If X® and W° are feasible for Py and P, respectively, show that

i cx’<w'p
iy If cx’= W, then X® and W° are optimal for Py and P, respectively.
iy W°Ax®-by=0 (ivy(WCA-C)X°=0.

(b) show that X° and Y° are feasible for Py and P respectively such that (iii) and (iv) in (a) are satisfied, then
X% and W0 are optimal for the respective problems.

. If Xis any feasible solution of the linear programming problem : Maximize f(x) = CX subject to AX <'b, X 2 0 fielding the

value f(X) of the objective function and Y be any feasible solution of its dual problem yielding the value g(y) of the dual
objective function, then show that £X) < g(Y). Further show that if the primal and dual problems have feasible solutions
X and Y, respectively, such that f(X) = g(Y), then X is optimal for the primal and Y is optimal for the dual.

[Delhi B.Sc. (Maths.) 93]

EXAMINATION PROBLEMS
. Prove that the dual of the dual is the primal. Write down the dual of the following problems, and solve them.

(i) Max.z+3x3+ X+ X3— X4 (ii) Max. z=4x; + 2x ,
SLx1+5x+3x3+4x <5 stx;+x 23
X1+ X =-1 Xy —X 2 2
X3— X3 <-5 Xy,X 2 0.

x20,j=1,2,3,4.
Hence or otherwise write down the solution of the above primal problems.
. Use duality to obtain an optimum solution, if any, to the following linear programming problems.

() Max.z+2x +3x, (i) Min. z=15x; + 10x
subjectto subject to
-X1+2x < 4 3x1+5x 25
X1+ X £ 6 Sx1+2x 2 3
X1 +3x% <9 Xy, X 2 0.
X1, X2 > 0.
[Ans. x; =9/2, %, =3/2 ,max. z=27/2]. [Ans. Xy =5/19 , X, = 16/19 , min. z = 235/19}.
(i) Bymeans of'duali'ty theory, solve and (iv) Max. z=6x; + 4x + 6x3 + X4
illustrate geometrically the following L.P.P. : subject to
Max. z=3x; + 2xp 4x1+5x +4x3+ 8x4 = 21
subjectto 3x1+7x+8x3+2x; < 48
X+ xp 21 : Xt,X,X3,X 2 0,
X1+ X 27 [Ans. x;=21/4 ,x,=0,
X1 +2x% < 10 Xx3=0, x4 =0,max. z=63/2]
X £ 3
X1, X% 2 0.
[Ans.x; =4, X, =3, max. z= 18).
(v) Max.R=6x+5y—-3z-4w (vi) Max. z=4x; + 3x;
subject to subject to
2x+3y+2z-4w= 24 Xy < 6
X+ 2y <10 X < 8
X+y+2z+3w < 15 X1+Xx £ 7
y+ z+ w< 8 3x;+x < 15
-x <1
X1,X% 2 0.

[Ans. Feasible solution does not exist]. [Ans.x; =4, x, =3, max 2= 25]
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(vii) Max.z=x3+5x (viii) Min. z=x1+ X,
subjectto subject to
3x;+4x < 6 2x1+x3 2 4

X1 +3x < 2 X1 +7x% 27
X1, X 2 0. Xi,X 2 0.
[Ans. Problem has no solution]. .

(ix) Solve the dual of the (x) 3x1+5x+4x3 2 7
following problem 6x;+X+3x3 2 4
graphically. 7Xxy—2x2—x3 < 10
Min. z= 10y, + 6y2 + 2y3 4x1+TXp—2X3 2 2
st—-y+y+yzs 21 Xy —-2X%+5x3 2 3

3y1+ye-ys 22 Min. Z2=3x; —2X + 4X3 ,
Vi.¥2,¥320 X1, X2, X3,% 2 0.

[Ans. x;=1/4 ,%=5/4,x3=0,Minz=10]
3. Solve the following problem by simpiex method.
3% -Xo-Xa28, X —-Xp+x322 and X ,X,X32 0, z=(15/2) x; — 3x; to be minimum.
Write the dual of the above problem. What should be the maximum value of the objective function of the dual ?
4. Consider the problem : Max. z=2x; + 3xz , subjectto
2x1+2x2 10, 2x1+X%< 6, X +2<6, and X ,X%20.
(a) Write the complete dual problem from the canonical form of the above primal.
(b) Solve the primal problem and then find the solution to the dual.
5. Find the dual of the problem:
Max. f(X) = 2x; — Xz , subject to the constraints 1 xy + Xz < 10,-2x1+ X% = 2,4x+3% 2 12;x % 2 0.
Solve the primal problem by simplex method and deduce from it the solution to the dual problem.
6. Use duality theory to solve the following linear programming problem :
Min. z=4x; +3X%+6x3, 8t X1+ X3 2 2, X+ X3 2 5,X1, X2, X3, 2 0.
7. Find the dual of the following problem and hence or otherwise solve it.
Min. f(x) = 6x+ 5y — 2z, subjectto x+3y+2225,2x+2y+22 2,4x-2y+3z2-1,and Xy, Xp, < X320

8. A company makes three products X, Y, Z out of three materials | P Py P3
P, , P, and P; . The three products use units of the three materials X 11 2 3
according to the following table : Y2 1 1

Z |3 2 1
The unit profit contribution of the three products are :
Product : X Y z
Profit contribution (Rs.) 3 4 5
and availabilities of the three materials are :
Material : : Py Py P3
Amount Available (units) : 10 12 15

The problem is to determine the product mix,. which will maximize the total profit.
Solve the primal problem and wirte the dual and give geometrical interpretation.
9. A firm makes three products A, Band C. Each product requires production time in each of three departments as shown

below :
Products Time taken (in hours per unit)
. Deptt. I Deptt. 11 Deptr. 111
A 3 2 1
B 4 1 3
C 2 2 3

Total time availabie is 60 hours, 40 hours, and 30 hours in departments |, Ii and |1} respectively. if product A contriutes Rs.
2 per unitand product Band C Rs. 4 and Rs. 2.50 respectively, determine the optimum product mix.
Write the dual of this problem and give its economic interpretation.

10. Consider the problem : Max.z=8xy + 6X2, 8.t. X - X% < 3/5,x-x 2 2,and )}1 X 20
Show that both the primal and the dual problem have no feasible solution

11. Consider problem A: Min. z=x; — 10xz ,8.t. Xy — 5x2 2 0, Xy ~5x% > -5,andx;, % > 0
and problem B : Maxz=-5%,st. X+ X < 1,—5x~5x < -10,and xy, % 20.
Explain, how the solutions of A and B are related ?

12. Find the dual of the problem : Max. z=— X; + 2X2 — X3
StL3x +Xo—X3 £ 10, -X1+4X+X3 2 6, Xo+X3 < 4,%,%,x3 20,
Solve the primal by simplex method and deduce the solution of the dual problem from the optimal table of the primal.



13.

14.

15.

16.

17.

18.

UNIT 2: DUALITY IN LINEAR PROGRAMMING /189

A dairy has two bottling plants one located at A, and other at B. Each plant bottles up three different kinds of milk, /e
Cow’s Toned and Double Toned. The capacities of the two plants in number of bottles per shiftin a day are as follows -

Plant

Cow'’s
Toned
Double Toned

demand.
Write the dual of this and give an economic interpretation of the dual variables.

The XYz company has the option of producing two products during the period of slack activity. For the next period,
production has been scheduled so that the milling machine is free for 10 hours and skilled labour will have 8 hours of time
available.

Product Machine time per unit Skilled labour time per unit Profit contribution per unit

obtained from the other. Aiso explain the context of the example what you understand by shadow prices (or dual prices or
marginal value) of resource. (Yammu (M.B.A.) Nov. 96)
[Hint: The primal problemis : Max. z= 5x1+3x, s.t. 4x1+ 2x, <10, 2X1+2x <8; xy, X 20

Ans.x; =1, ;=3 and Max, z=14,

The dual problemis : Min, z = 10y1 +8y5, sit. 4y + 2,25, 21 +2y, >3; V.20

Ans.y; =1, y,=1/2 and Min. z= 14,

(iv) Has the problem multiple solutions ? (Delhi (M.B.A.,) Nov. 97)
A person consumes two types of food A and 8 everyday to obtain 8 units of proteins, 12 units of carbohydrates and 9
units of fats which is his daily minimum requirements. 1 kilo of food A contains 2, 6 and 1 units of protein, carbohydrates
and fats respectively. 1 kilo of food Bcontains 1, 1 and 3 units of proteins, carbohydrates and fats respectively. Food A
costs Rs. 8.50 per kilo, while 8 costs Rs. 4 per kilo. Determine how many kilos of each food should he buy daily to
minimize his cost of food and still meet the minimum requirements,
Formulate ths problem mathematically. Write its dual and solve the dual by the simplex method.
(Gujarat (M.B.A.) Feb. 96)

[Hint: Min z = 8:50x1 +4x , s.t. 2X1+ X2 8, 6x + 2212, X1 +3x>9; X1, X% 20.

Ans. xy = 1, X2 =6, min z=65/2.

The Dual problem s -

Max. 2 =8y; + 12y, + 9z, St 2y1 + 6y + y3 < 8:50, y1+ 5+ 3y < 4, Yi.¥2,y320.

Ans. y; =31/8, y, = 1/8, y3=0,max. Z = 65/2.]

Three food products are available at the cost of Rs. 10, Rs. 36 and Rs. 24 per unit, respectively. They contain 1,000
4,000 and 2,000 calories per unit, respectively, and 200, 900 and 500 protein units per unit, respectively. It is required to
find the minimum cost diet containing at least 20,000 calories and 3,000 units of protein. Formulate and solve the given
problem. Write the dual and use it to check the optimum solution of the given problem. (Shivaji (M.B.A.) 95)
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19.

20.

21.

22,

the operators. It is felt that all products can be sold at the Rs. 10 per unit profit figure. The company has available 500
square feet of floor space for the machines and 100 operators to run the machines. Operators are paid Rs. 4 per hour.
(i) How many machines of each type should be purchased in order to maximize profit ?

(iiy Write the dual of the given problem and use it for checking the optimal solution. (Punjab (M.B.A.) 96)

Respond Trueor Falseto the following, justify your answer in case of False.

(i) It the number of primal variables is much smaller than the number of constraints, it is more difficult to obtain the
solution of the primal by solving its dual.

(iy When the primal problemis non-optimal, the dual problemis automatically infeasiable.

(iii) An unrestricted primal variable will have the effect of yeilding an equality dual constraint.

{iv) !f the solution space is unbounded, the objective value always will be unbounded.

(v) The selection of the entering variable from among the current non-basic variables as the one with the most negative
objective coefficient guarantees tha most increase in the objective value in the nextiteration.

(vi) Inthe simplex method, the feasibility condition for the maximization and minimization problems are different.

(vii) A simplex iteration (basic solution) may not necessarily coincide witha feasiable extreme point of the solution space.

(viii)if the leaving variable does not correspond to the minimum ratio, at least one basic variable will definitely become
negative in the next iteration. (1AS (Maths.) 99)

Using duality or otherwise solve the linear programming problem :
Minimize 18x; + 12X

Subjectto 2x; — 2% 2~ 3

3x;+2x223
xy,%20. [1AS (Main) 2001]
Explain the duality principle in linear programming. Construct the duai of the problem
Maximize z=3x1+17X2+9%3
subject to Xy — Xo + X3 2 3
-3x +2x3 < 1
2xy + X — X3 = 4
with X1, X2, X32 0. [AIMS (Bang.) MBA 2002]
Solve the following problem by dual method : Maximize z=30x1 + 20 x,, subject to the constraints — x; — X2 2 -8,
—Bxy—Axp € —12,5% +8Xx2 =20, X1, X2 2 0, [JNTU (Mech. & Prod.) 2004]
OBJECTIVE QUESTIONS
. The dual of the primal maximization LP problem having mconstraints and n non-negative variables should
(a) have n constraints and m non-negative variables. (b) be a minimization LP problem.
(c) both (@) and (b). (d) none of the above.

For any primal problem and its dual:

(a) optimal value of objective function is same.

(b) primal will have an optimal solution if and only if dual does too.

(c) both primal and dual cannot be infeasible.

(d) all of the above.

The right hand side constant of a constraint in a primal problem appears in the corresponding dual as
(a) a coefficientin the objective function. (b) a right hand side constant of a constraint.
(c) an input-output coefficient. (d) none of the above.

Dual LP problem approach attempts to optimize resource allocation by ensuring that

(a) marginal opportunity cost of a resource equals its marginal return.

{b) marginal opportunity cost of a resource is less thanits marginal return.

(c) both (a) and (b).

(d) none of the above.

Shadow price indicates how much one unit change in the resource value will change the

(a) optimality range of an objective function (b) optimal value of the objective function

(c) value of the basic variable in the optimal solution. (d) none of the above

Principle of complementary slackness states that

(a) primal slack x dual main= 0. (b) primal main x dual surplus = 0.

(c) both (a) (b)- (d) none of the above.

1f dual has an unbounded solution, primal has

(a) no feasible solution. (b) unbounded solution. (c) feasible solution. (d) none of the above.

If at the optimality a primal constraint has positive value of slack variable, then
(a) dual variable corresponding to that constraint has zero value.
(b) corresponding resource is not completely used up.
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(c) corresponding resource have Zero opportunity cost.
(d) both (b) and (c) but not (a).
9. The shadow price is -

(a) the price that is paid for purchase of resources.
{b) the saving by eliminating one of the excess quantities of resource.
(c) theincrease in the objective function value by providing one additional unit of resource.
(d) none of the above.

10. The value of dual variable
(a) represents marginal profit of each additional unit of resource
(b) can be obtained by examining the z; row fo primal optimal simplex table
(c) can be obtained by examining z; - ¢; row of primai optimal simplex table.
(d) all of the above.

_ Answers
L© 20 3@ 4@ 5@b o © 7@ 8@ 9@ 10.(a).

¥



Txe DuaL SmMpLEX METHOD

['8.1. INTRODUCTION |

In simplex method, we have already seen that every basic solution with all zj—¢; 2 0 will not be feasible
(since z;—¢j= CBB_1 a;—¢jis independent of vector b for all j ), but any basic feasible solution with all

zj—¢ 2 Owill certainly be an optimal solution. Such type of typical problems, for which it is possible to find
infeasible but better than optimal initial basic solution (withallzj—¢; 2 0),can be solved more easily by dual
simplex method. Such a situation is recognized by first expressing the constraints in the form (<) and the
objective function in the maximization form. After adding the slack variables and putting the problem in the
tableau form, if any of the right hand side elements are negative and if the optimality condition is satisfied, then
the problem can be solved by the dual simplex method. It is important to note that by this arrangement,
negative element on the right hand side signifies that the corresponding slack variable is negative. This means
that the problem starts with optimal but infeasible basic solution as required by dual simplex procedure. In this
method, we shall proceed towards feasibility maintaining optimality and at the iteration where the basic
solution becomes feasible, it becomes the optimal basic feasible solution also.

The dual simplex method is very similar to the regular simplex method. In fact, once they are started, the
only difference lies in the criterion used for selecting a vector fo enter the basis and to leave the basis. Also, it
s to be noted that in the dual simplex method, we first determine the vector to leave the basis and then the
vector to enter the basis. This is just reverse of what is done in the simplex method. The dual simplex method
yields an optimal solution to the given linear programming problem (that can be handled by this method) in a
finite number of steps, provided no basis had to be repeated.

Since the dual simplex method deals with the primal problem as if the simplex method were being applied
simultancously to its dual problem, and the criteria used for inserting and leaving vectors are those for the dual
rather than the primal problem ; that is why this method is called the dual simplex method.

Before giving the details of dual simplex method, we shall discuss in the following section how an optimal
but infeasible solution can be obtained to start with.

[6.2. COMPUTATIONAL PROCEDURE OF DUAL SIMPLEX METHOD B

8.2-1. To find the initial solution which is'infeasible but optimal

As already pointed out, it is difficult to find, in general, a starting basic solution to the primal with all
zi—¢ 2 0 (e, optimal). However, it is easy to obtain such an initial basic solution for typical type of
problems only (for such problems the dual simplex method is applicable).

First of all, we should remember that we can find the initial basic solution to the primal with all
zi—¢; 2 0 (optimal) only when ¢; < 0 for every j in the maximization objective function. In other words, the
coefficients of the variables in the maximization objective function must be non-positive in order to find an
initial solution to start with dual simplex method.

To illustrate the procedure of finding an infeasible but optimal solution to start with dual simplex method,
let us consider the following simple example :

Example 1. Find an infeasible but optimal basic solution for the linear programming problem :

Max. z = — 4x, — 6x, — 18x3 , subjecttox, + 3x323, x;+2x32 5,and xp , X2 X3 20.
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| Solution. Step 1. First of all, we judge whether it is possible or not to find an infeasible but optimal basic
solution.
Since the objective function is that of maximization and all ¢s are negative
(c;=—4,c;=—6, c3=— 18),itis possible to find such a starting solution.
Now, introducing surplus variables x4 and xs to each constraint, we have
Xy + 3X3 - X4 =3
Xy + 2x3 -x5 =135
X1, Xp,X3,X4,%5 2 0.
In order to get initial basis matrix as an identity matrix we multiply the constraint equations through by
— 1 and get : :
—-x = 3x3+ x4 ==3
—X— 2x +x5 =—5.
We now construct the starting simplex Table 8-1 in usual form. In this table,
Al =CgX; —C; =4, A2=CBX2"'CZ=6,A3 =CgX3—cC3= 18.
Thus, the solution from the Table 8-1is givenby x; =0 ,x,=0,x3=0,x4=-3 ,x5=-35,
which is obviously infeasible but optimal (since all A;’s being 2 0). We shall always start the dual simplex
method with such an initial solution.

Table 81
G- -4 -6 ~18 0 0
vamtapies| @ %e | X% X X% X X%
' x4 0 -3 -1 0 -3 1 0
xs 0 -5 0 -1 -2 o 1
2=CpXp=0 4 6 18 0 0 A

Like the regular simplex method, the method of solution requires two conditions, the optimality and the
feasibility. The optimality condition ensures that the solution remains optimal all the time while the feasibility
condition forces the basic solutions towards the non-negativity of basic variables.

The criteria for leaving vector ensures the feasibility condition while the criteria for entering vector
ensures the optimality condition. '

We now proceed to find the ‘leaving vector’ and the ‘entering vector’ in the following steps.

Step 2. To find the vector (B,) to leave the basis

We always remove the vector §, for which r is obtained by

Xg, = miin [xgi,xpi <0]. ..(8:1)

In above example, we have Xxg,=min (xg; ,xp)=min (-3 ,-5)=-5=xp
Therefore, r = 2. So we must remove the vector B, , i.e. (1) .
Thus, the leaving vector is selected corresponding to the basic variable having the most negative value. If
all the basic variables are non-negative, the process ends and the feasible (optimal) solution is reached.
Step 3. To find the entering vector (ay)
For predetermined value of r [obtained from equ. (8-1)], we determine k by using the formula
A A;
—* _ max _J.,xrj<0 , ...(8:2)
Xrk J | X
then the vector a; will enter the basis. If this min. is attained for more than one value of &, then degeneracy
appears and the problem of cycling can be removed by usual rules for resolution of degeneracy as in simplex

method.
In above example, we have

X3 1 6/5 0 1 4/5 -3/5 0
xs 0 0 0 0 1 -1 1
Z =CgXp=-12/5 0 0 2/5 1/5 0 A
~z=12/5

Example 3. Use dual simplex method to solve :
Min. z=3x, +x, , subjectto x; +x; 2 1,2x;+3x, 22,x;,and x; 2 0. [IAS (Maths) 90]
Solution. The given problem can be written as
Max. 2’ = — 3x; —x, , 2 = — z, subject to
—x1 —x <—1
—~2x;-3x, £ -2
- X1, X2 20
Adding the slack variables x3 and x, to each constraint, respectively, we get
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—X1—X+ X3 =-1
—2x1—3x2 + X4 =-2.
Writing the constraint equations in matrix form, we have

S [*
-1 -1 1 0]fx|_[-1
[—-2 -3 0 1} X3 _[—-2]
X4
Now the starting dual simplex table can be constructed as Table 8-5 .
Table 85
Cj— -3 -1 0 0
BASIC Cs X X, X, X3 X,
VARIABLES By ®2
x3 0 -1 -1 -1 1 0
x4 0 - -2 -2 0 1
= CBXB =0 3 1 0 0 — Aj
) {

The solution : x;=0,x,=0,x3=—1,x,=~2 is the starting basic solution which is infeasible but
optimal..We now start with the first iteration of dual simplex method.
First Iteration

To determine the leaving vector (B,) :
Since xp, = min. (xp; , xg; <0) =min (xg; , xg)=min (= 1,-2)=—2=xp,
Hence r =2 .So we must remove the vector 8, (marked L.
To determine the entering vector a for predetermined value of 7 (= 2) :
Since, ﬁ= max —A~1~ , ﬁ, for xy; <0, xp, <0] = max[—3~ 1 ]—_—L-ﬁ

X2k X21 X22
Hence k = 2. So we must enter the vector a, corresponding to which X, is already given in Table 8-5.
To find the transformed table :
Here the key element is (- 3). In the usual manner, we can get the transformed table as given below :

Table 86
G- -3 21 0 0
BASIC Cp Xp X, X, X, X,
VARIABLES ®,) B0
X 0 > -1/3 -1/3 0 1 [-173]
X2 -1 2/3 2/3 1 0 ~-1/3
Z=CpXp=-2/3 /3 0 0 173 A
5.2=2/3 | 7

Ay =CyXy~c;=(0,-1) (-3, +3=7/3, Ay=CyX—c4= (0, - D(-3,-D-0=1.
Even now, the corresponding basic solution is infeasible but optimal. So we proceed to second iteration.
Second Iteration
To find the leaving vector (B,) :
Since xg, = min [xp;] , (xp, is ignored because it is not negative). Therefore, r=1.
We we must remove the vector B; .

To find the entering vector ay for predetermined value of r (=1) :

A, A A A
Since, E =k max —i,—“

. (because only x;; and x)4 are negative)
Xrk Xk X1 X4
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773 1/3] -1_As

=max.| —=,— < |=—=

~1/3"=1/3] 1 x4
Hence k = 4 . So we must enter the vector a4 corresponding to which vector X, is given in Table 8-6 .
To find the transformed table :

In Table 8-6 , the key element is (— %) . In usual manner, we can get the following transformed table.

Table 8.7
¢ -3 -1 0 0
BASIC Cp Xp X, X, X3 X,
VARIABLES .
Xy 0 1 1 0 -3 1
X2 -1 1 1 1 -1 0
Z=CgXp=-1 2 0 1 .0 « A
nz=1

A=CgX—c;=(0,-1)(1,D)+3=2, A;=CgX3—¢3=(0,-1)(-3,-1)-0=",
. At this stage, the solution x; =0,x,=1,x3=0, x4 =1 becomes feasible and hence it is the required
optimal solution withmaxz=1.
The solution of the dual problem can be obtained from the final table of primal solution as the values of
A; corresponding to slack variables of the primal, ie. wy=1,w;=0.
Also, the dual problem is given as follows :
Min z,, = wy + 2w, , subjectto wy+2w, <3, w +3w; <1, and wy,wy20.
Exampled. Use dual simplex method to solve :
Max. 7= — 2x; — x3 subjectto x; + X — X325, x;—2x,+4x328, and x,,x, x3 2 0.
[Banasthali (M.Sc.) 93; Roorkee (B.E. IVth) 90]
Solution. The given problem can be written as :
Max. z =~ 2x; — Ox, — x3 , subjectto—x; —x; +x3 $=5,—x +2x,—4x3S-38, and x;, x3, x3 2 0.
Adding the slack variables x4 and xs to each constraint, respectively, we get the constraint equations :
-X; —X3 +X3 + X4 =-5 :
-—x1+2x2—4x3 + x5 =-8.
It matrix form, these two equations can be written as :
X1 .
[—1 -1 11 o] 2 =[-5]
-1 2 -4 01 X -8

Xs

'Now, we are able to construct the following starting dual simplex table :

Table 88

G- -2 0 -1 0 0

BASIC Cp Xp X, X; X3 X, Xs
VARIABLES ®) ®2)
X3 0 -5 -1 -1 1 1 0

x5 0 - -8 -1 2 0 1

z=CgXp=0 2 0 1 0 0 « A
1) J

The basic solution, x; =x; =x3 =0, x4 =— 5, xs = — 8 in(Table 8-8), is infeasible but optimal. So we start
with first iteration of dual simplex method.
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First Iteration
To determine the leaving vector (j,) .
Since Xpgr= min. [.xB,' » Xgi < 0] = min. [xm ’ xm] = min. [— 5 s = 8] =—8= XB2 s
Hence r = 2 . So we must remove the vector f3, .
To determine the entering vector (ay) for predetermined value of r (= 2) :

Since
[2 1] -1 A

Xk Xy REITRE R =1 TaTTE Ty
Therefore, k = 3 . So we must enter the vector a3 corresponding to which X is given in Table 88.
To obtain the transformed table :
In Table 8-8 , — 4 is found to be the key element.-So, adopting the usual rules of transformation, we get the
following transformed table.

A"—A"—max AL él}=m

Table 8.9
G- -2 0 -1 0 0
BASIC Cs Xg X3 X, Xs X, Xs
VARIABLES () . (B
x4 ] - -7 ~-5/4 (=172} 0 1 1/4
x3 -1 2 1/4 -1/2 1 0 -1/4
z=CpXp=-2 /4 142 0 g 1/4 A

A =CgX;—c1=(0,-1)(-5/4.1/4)-2=7/4
Ar=CaX;~3=(0,-1)(~5,-3)-0=1/2
As=CpXs~c5=(0,-1)(1/4-1/4)-0=1/4.

The corresponding basic solutionis givenby x; =x; =x5=0, x4 =—7 ,x3=2,z=-2.

Since one infeasibility is removed, the objective function progresses towards the optimal value. We now

start with the second iteration.
' Second Iteration

To determine the leaving vector (B,) .

Since Xg, = min. [xBi ,xg;<0]= xg=-—17

Therefore, r = 1 . So we must remove the vector B;.

To determine the entering vector (ay) for predetermined value of r (=1) .

Since,
B BB A Ay (14 172 N
X X1 IETRETRET =547 =1727 7 xy

Therefore, k =2 . So, the entering vector will be a, corresponding to which X, is given in Table 8-9.
To obtain the transformed table :
Key element is found to be (- %). So we get the transformed table as usual.

Table 810
¢ -2 0 -1 0 0
 BASIC Cs Xp X, X, X, X, Xs
VARIABLES
x 0 14 5/2 1 0 -2 -122
x5 -1 9 3/2 0 1 -1 -1
z=-9 172 0 0 1 172 « 4

Ar=CpX,-¢;=(0,-1)(5/2,3/2)-2=1
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Ay=CpX4—c4=(0,-1)(-2,-1)-0=1

As=CpXs—cs=(0,-1)(-3,-3)-0=3.

The associated basic solutionis givenbyx; =0,x, =14 ,x3=9,z=-9.
At this iteration, all the basic variables are non-negative, and consequently the calculations terminate with

the above mentioned optimal solution.
Also, the optimal values of the dual variables wy , w,, as read from the final Table 8-10 , are given by

wi=A=1 ,w2=A5=%,
where the dual problem is given as follows :
Min. z,, = 5w, + 8w, , subject to w; + wy S—2,w; — 2w, < 0,—w; —4w, <— Landw;, w, 20.

ExampleS. Use dual simplex method to solve the following L.P.P. :
Min.  z=6x;+Txy+ 3x3+ 5x4, subject to

Sxp+6x;—3x3+4x4 2 12, x5 + 5x3 — 6x, 2 10, 2x1+5x2+x3+x428, and xy,%y,%3,x320
[Meerut 91, 90]

Solution. Step 1. The given L.P.P.is within in standard primal form as follows :
Max. z'=—6x;=Tx;—3x3—5x4, 7 =~2
st - le - 61'2 + 3X3 —4X4 <-12
—x;—5x3+6x4 £ — 10
26 = 5x,-x3—x S-8
and Xy, X2,X3,% 2 0.
Since objective function is of maximization and all ¢; < 0 , we can solve this L.P.P. by dual simplex algorithm.
Step 2. Introducing the slack variables xs , xg and x, the constraints of the above problem reduce to the

following equalities :

—le—&2+3X3—'4X4 + X5 =-12
— Xy — 5x3 +6x4 + Xg =-10
—le—st —X3 —X4 +X7=—8

The starting basic solution to the primal is x; = x; = x3 =x4 =0, x5 =~ 12,x4=-10,x%,=-8,

which is infeasible.
The starting simplex table is as follows.

Table 8-11

G- —6 —1 —3 —5 0 0 0
Basic Var.| Cp Xg X3 X, X3 X4 Xs Xs Xy
B B2 Bs

xs 0 - -12 -5 3 -4 1 0 0
X6 0 -10 0 -1 -5 6 0 1 0
X7 0 -8 -2 -5 -1 -1 0 0 1
Z=0 6 7T 3 5 ol 0 0 4;

A] =CBX,-c1=6,A2=7,A3=3 ,A4=5 ,A5=0=A6=A7.
Thus the starting basic solution is infeasible but optimal.

To determine the leaving vector (,) :
Since xg, = Min (xg; , xp; <0) =Min (- 12,10, - 8) =— 12 =xp

r=1,i.e., B (=X;)is the leaving vector.
To determine the entering vector (ay) for predetermined value of r (=1) :

ﬂ=é’.‘_=Max L] % < 0% =Max A A A
Xk Xk J le’ Y X1 Xy X4
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-5 T~ 6 T~ 4 6 X12 ’
Therefore, k=2, i.e., a; (=X;) is the entering vector. Hence key element=x;, =— 6 .
Proceeding as usual, the second simplex table is as follows.

- A
=Max{i 7 i}=_7_=_z

Table 8-12
¢ -6 -7 -3 -5 0 0 0
BasicVar.| Cg Xp X X, X3 X4 Xs Xs X,
x -7 2 5/6 1 -12 2/3 -1/6 0 0
X 0 =81| 5/6 0 203 -1/6 1 0-
x 0 2 | 136 0 -2 /3 -5/6 0 1
‘=—14 1/6 0 BT/Z 1/3 7/6 E 0 — A

The solution given in Table (8-12)is : x; =x3=x3=x5=0,x, =2, x¢=— 8, x; =2, which is infeasible
but optimal. Therefore, it can be improved further.

To determine the leaving vector (jB,) :

Since xg,=Min (xp; , xp; £ 0) = Min (xz,) =Min (- 8) = -8 =xp,

Therefore, r=2,i.e. B, (=Xg)is the leaving vector.

To determine the entering vector (ay) for predetermined value of r (= 2)

A A A; A; A
—k=—L=M?x —L,x2j<0 = Max —3,—5
Xk X ] | X X23  X25
1372 7/6 =13 -7| -13 A
‘Max{—11/2’~1/6}‘Ma" 1171711 x
Therefore, k=3, i.e. a3 (= X,) is the entering vector. Hence key element = x,3 = — 11/2 .
Proceeding as usual, the third simplex table is obtained as follows :

Table 813
¢ — -6 -7 -3 -5 0 0 0
Basic Var. Cp Xp X, X3 X3 X4 X5 XQ X4
X2 -7 30/11 25/33 1 0 2/33 -5/33 -1/11 0
x3 -3 16/11 -5/33 0 1 -40/33 1/33 =2/11 0
X7 0 78/11 18/11 0 0 -21/711 -8/11 -7/11 1
7' =-258/11 38/33 0 0 271/33  32/33 13/11 0 A

The solution givenin Table 8-13is : x; = x4 =x5=x6=0, x,=30/11,x3 = 16/11 and x;=78/11,
which is feasible and optimal. '
Hence the optimal feasible solution of the given L.P.P. is :
x1=0,x,=30/11,x3=16/11, x4 =0 and Min. z =~ Max. 7’ = 258/11 .

Remark. It is interesting to note in the dual simplex method that we seek to maintain dual feasibility but remove the primal
infeasibilities. The starting basic solution in this method is obviously dual feasible.

l£.4. ADVANTAGE OF DUAL SIMPLEX METHOD OVER SIMPLEX METHOD

The main advantage of dual simplex method over the usual simplex method is that we do not require any

artificial variables in the dual simplex method. Hence a lot of labour is saved whenever this method is
applicable.

l 8.5. DIFFERENCE BETWEEN SIMPLEX AND DUAL SIMPLEX METHODS

The dual simplex method is similar to the standard simplex method except that in the latter the starting initial
basic solution is feasible but not optimum while in the former it is infeasible but optimum or better than
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optimum. The dual simplex method works towards feasibility while simplex method works towards
optimality.

8.6. SUMMARY AND COMPUTER APPLICATIONS

The iterative procedure for dual simplex algorithm may be summarized as follows :

Step 1.

Step 2.

First convert the minimization LPP into that of maximization, if it is given in the minimization
form.

Convert the * 2’ type inequalities of given LPP, if any, into those of ‘ <’ type by multiplying the
corresponding constraints by — 1.

Step 3.%duce slack variables in the constraints of the given problem and obtain an initial basic solution.
~Put this solution in the starting dual simplex table.

Step 4.

Step 5.

Step 6.

Step 7.

Test the nature of z; — ¢;in the starting table.
(i) If all z; — ¢; and x; are non-negative for all i and j, then an optimum basic feasible solution has
been attained.
(ii) If all z; — c; are non-negative and at least one basic variable, xg,, is negative, then go to step 5.
(iii) If at least one z; — c;is negative, the method is not applicable to the given problem.
Select the most negative xg;. The corresponding basis vector then leaves the basis set B. Let xg, be
the most negative basic variable so that 3, leaves the basis set B.
Test the nature of Xy s Jj=12,...,n
(i) If all x,; are non-negative, there does not exist any feasible solution to the given problem.
(ii) If at least one x,;is negative, compute the replacement ratios
48y <0 =12,
Xrj
and choose the maximum of these. The column vector corresponding to x,, then enters the basis
set B.
Test the new iterated dual simplex table for optimality.
Repeat the entire procedure until either an optimum feasible solution has been attained in a finite
number of steps or there is an indication of the non-existence of a feasible solution.
For computer applications, flow-chart of dual simplex method is given as follows :

Q.

1. Whatis the essential difference between regular simplex method and dual simplex method ? [Meerut M.Sc. (Meth) 90]
2. Give the outlines of dual simplex method. [Meerut M.Sc. (Math.) 90]
3. Whatis dual simplex algorithm ? State various steps involved in the dual simplex algorithm.
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FLOWCHART OF DUAL SIMPLEX METHOD

Reformulate the given

problem in standard
form.

Obtain the initial basic
feasible solution to this
problem.

Compute the net evaluations
z;—c; and setup the standard
simplex table.

A

Update the dual simplex
table by appropriate
operations.

Examine the row of net
evaluations and the
column of basic variables.

Construct a new table. Remove the
leaving variable from the basis
and introduce the entering one.

Choose the maximum of these
ratios. The non-basic variable
corresponding 1o it enters the basis.

A

Are all the net

The solution

Select the negative coefficients
and divide the corresponding
net evaluations (A;) by them

ow of leaving variable 2

evaluations (zj—cj) ;?osmve under test
and the basic variables . .
S is optimum
non-negative!
Are all the net
evaluations (z—<) positive Mffzti’;:d
and at least one basic variable
is negative ?
The most negative
basic variable leaves
the basis.
Is there any negative No feasible
constraint coefficient in the solution
exits.




10.

12.

13.

14.

15.
16.
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EXAMINATION PROBLEMS
Use dual simplex method to solve the following linear programming problems :

Max. z=-3x, - 2x, 2. Max.z=-2x, - 2xp-4x3 3. Min.xy +2x+ 3x3,
subjectto subject to subject to
X1+ x21 2x1+3x+5x3 2 2 2% —X +x3 2 4
X1+Xp £ 7 3 +X +7x3 < 3 X1+X2+2x3 2 8
X1 +2x% <10 X2~ X3 2 2
X <3 X1,X%,x3 2 0. X1.%.X3 2 0. [AIMS(Bangiore)02]

[Hint .Start with a basic-nonfeasible solution.]
[Ans. x; =0, % =1, Max. Z=-2] [Ans.x =0, Xo=2/3, X3=0,2%=4/3) [Ans. x; =6, x =2, X3=0, min. z=10]

Min. z=6xy + x, , 5. Minz=x+x,, 6. Min. z=10x; + 6 + 2x3,
subjectto subjectto subject to
2% +x% >3 2 +% 2 2 X1 +X2+ X3 2 1
Xi—X% 20 -X1=X 2 1 IX1+x-x3 2 2
Xt, X% 2 0. X, % 2 0. X1,%,X 2 0. [VTU (BE com.) 02]
[Ans. x;=1,x=1,min. z= 7] [Ans. Pseudo optimum basic feasible solution.] [Ans.x; =1/4, X2=5/4 ,x3=0,
! min. z= 10}
Min. 2= 80x; + 60x, + 80x3, 8. Min.z=3x; + D+ x3+4x5, 9. Min. z= X1+ 2%
subject to subject to subjectto
X+2X%+3x3 > 4 21 +4x+5x3+ X4 > 10 2x1+x 2> 4
2x4 +332 3 3X1—X2+7X3—2X422 X1+2x% 27
2% +2%+x32 4 5x;+2x2+ X3+ 6x4 2 15 X1,X 2 0.
4 +X+x326 X),X2,X3,X 2 0. [Ans.x1=0,x2=2,min.z=4]
X1,X%,X3 20 [Ans.x1=65/23,x2=0,)(3=20/23.x4=0,
[Ans. x; = 16/13, %, =6/13, min, z=215/23]
Xs - 8/13 , min, z=2280/13)
Maximize z=- 4x, - 62 - 18x3 11, Minimize z=2x; + 2x,
subjectto X1 +3x323 subject to X1 +2x%21
X2+2x325 . 2x1+x2 1
X1, X2, X3 2 0 x120and ;20
[Ans. x; =0, %,=3, x3=1,max. z=— 36.] [Ans. x; =1/3, 2= 1/3 , min z= 4/3]

Use dual simplex method to obtain zeroth and first iteration for the problem :
~2X) - X2+5x3 2 2,3%; +2x+ 4x3 > 16, 3x + 5x3 + 4x3 = z(min.), and X1.,X%,X20.
Write complementary basis corresponding to first iterate. Write the simplex multipliers with respect to the basis of first iterate.
Verify these results.
[Ans. X1 =) =0, x3=4, min z=16)

(a) Show that the value of the objective function of the dual for any feasible solution is never less than the value of the
objective function of the primal corresponding to any feasible solution.

(b) Write the dual corresponding to x+y+2z<120, 3x- 2y—-z290, 2x+4y+2z=10, 5x+ 8y + 10z= R (max.)
X, y,z20.Use dual simplex or simplex method and obtain zeroth and first iterates of the dual. Write the simplex
multipliers corresponding to the basis of the first iterate.

Show with the help of an example how when one solves an LP problem by simplex method going through infeasible but better
than optimal solution, one indirectly goes through infeasibie but better than optimal solution of the dual LP problem. How this
factis utilized in the solution of the dual.

Whatis the essential difference between regular simplex and dual simplex method ? [Meerut (LP) 90]
Find optimum solution of the following problem by not using artificial variables : '
Min. z= 10X + 10%, s.t. x; + X2210,3x1+2x, 224, %120, % > 0, [Delhi (MCI) 2000]

e e e



SensITIVITY (PoST-OPTIMALITY) ANALYSIS

[ 9.1. INTRODUCTION | l

So far, we have assumed that all the coefficients of a linear programming problem are prescribed. But, the
optimal solution of the linear programming problem (max. z=CX, subjectto AX=b,X 2 0) depends upon
the parameters (c; , a;; and b;) of the problem. The parameters of the problem are usually not known with
complete certainty, i.e., the a;; , b; and c; are estimates or they vary over time. For example, in a diet problem,
the cost of any particular feed will vary from time to time. If the optimal value of the objective function is
relatively sensitive to changes in certain parameters, special care should be taken in estimating these
parameters and in selecting a solution which does well for most of their likely values. Then, it is quite
important to know the range of cost for which the solution remains optimal. Therefore, it seems desirable to
see as to how sensitive the optimal solution is with regard to discrete changes in parameters of the problem.

Thus, the investigation that deals with changes in the optimal solution due to changes in the parameters
(aij , bi and ¢;) is called sensitivity analysis or post-optimality analysis.

The objective of sensitivity analysis is to reduce the additional computational effort considerably which
arise in solving the problem anew. The changes in the lincar programming problem which are usually studied
by sensitivity analysis include :

1. Coefficients (c;) of the objective function. These include :
(a) Coefficients of basic variables (¢; € cp)  (b)Coefficients of non-basic variables (c; € Cp)
2. Change in the right-hand side constants ®y).
3. Changesinay (the components of matrix A). These include :
(a) Coefficients of the basic variables (a; € B) (b) Coefficients of the non-basic variables (a;; € B)
4. Addition of new variables to the problem.
5. Addition of new (or secondary) constraint( s).

In general, these changes may result in one of the following three cases :

Casel. The optimal solution remains unchanged, that is, the basic variables and their values remain

essentially unchanged.

Case I1. The basic variables remain the same, but their values are changed.

Case I11. The basic solution changes completely.

Before introducing the techniques for testing the different changes in the linear programming problem, we
shall first prove an important lemma in the folloiwng section.

['2.2. AN IMPORTANT LEMMA B

Lemma. Ifd; 2 0,dj+ M 2 0,j=1,2,..,n,then

Max. d; Min. d:
i j=klsas g |=F0
@ >0l 9 @ <ol 9
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Proof. Sinced; 2 0 and i+ 20(j=1,2,..., n), we have the following three possibilities :
(i) Forthose j for which di > 0,wehave

d; Max | — 4;
> -1 > T N CH
(ii) For those j for which d/ <0, wehave
d. -d
A<--1L or A<Min| - | @’ <0)
4 q @

(i) For those j for which dj' =0, we have A as unrestricted.
Thus, from (i) and (ii) above, we conclude that A must satisfy the relationship :

Max —d: Min. —d;

j << j —21, .91
i I o1
@ >onL% @ <olL%

Also, if dj' 2 O for allj, then there is no upper bound. Similarly, if d}’ < 0O for all j, then there is no lower
bound.
This completes the proof of the lemma.

9.3. CHANGES IN THE COEFFICIENTS (¢)) OF THE OBJECTIVE FUNCTION

Letus consider the linear programming problem
Max.z =CX , subjecttoAX=b,Xx > 0 s «.(9-2)

for which Xg is the optimal basic feasible solution and B is an optimal basis matrix. We assume that our
problem is non-degenerate and that we have had a basic feasible solution to 9-2).

Then, we have Xg=B'b. .{(9-3)

Obviously, (9-3) shows that if we change some component ¢; of vector C, then Xy will not change (X is
independent of c). Also, xg will always remain basic feasible solution. But, however, the optimality
conditions

AjEZj-C>ZOf0ral]j,
which are sz/a\tisﬁed for optimal solution Xg before changing c; , will not (necessarily) be satisfied when cjis
changed to ¢;, i.e. the inequality zj— ¢; 2 0 may change if ¢; is changed. Furthermore, the variations in the
vector C can be made in two possible ways :
(1) Only that component c; of vector C is changed which is the coefficient of non-basic variable X; in the
objective function, i.e., ci€ Cg. .
(i1) Only that component ¢; of vector C is changed which is the coefficient of basic variable X; in the
objective function, i.e. ¢ € Cy. ‘

Casel. Variationin ¢ € Cp:

Let us assume that ¢j € Cgischangedto (¢j + Acj) . Since X is an optimal solution, therefore zj—¢ 20,
for allj.

If with this change the optimality of Xg is to be preserved, then Ac; must satisfy the optimality condition

Zi—=(cj+ Acj) 20. ...(9:4)
Since z; = Cy X; does not depend upon Cj € Cg,we shall have
chSzj—-cj or Aci<A; ..(9:5)

Thus, if ¢; € Cy is replaced by (¢j + Acj) such that Ac; < zj— ¢; ; then the optimal value of the objective
function and the optimal solution as well will not be affected.
CaseIl. Variationsin cj€ Cg(saycj=cp,):

m
We have L =CygX;= iEI CBi Xij -

Therefore, if we change cg, to cgr+ Acp, , then the value of zjis affected and is given by
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A

m .
zj = X cpixj+(cpt Acg,) X;j -

i=1i#r
. . A L
Also, with this change z;—¢;j=| . 12' cgi Xij+ (cpr + Acgy) Xpj | = ¢
i=1,i#r

m
=\: ,'-2-:1 cB,-x,-j+x,j ACB{]—CJ'

= [Zj + X Acp] — ¢i= (Zj - Cj) + Xy Acg, .
If the solution Xg remains optimal after such variation, then Acg, must satisfy the optimality condition

2-¢ 20 or (z—¢)+x;AcE 2 0. (96)
Since zj—c; 2 0 (becauseXg is optimal initially), (z; — ¢;) + Acg, x;; 2 0 [from (9-6)],
the lemma (9-1) can be applied by replacing, d; = z;— ¢;, df > x;; and A — Acg,,
Max. [_ A, Min. [_ A,
and we obtain j [—é‘} SAcg S J [—&] ..(97)
x’j >0 x’j x,j <0 xﬂ )

Furthermore, the value of objective function may change if cp,is changed to cg, + Acg, satisfying (9-7). To
_ determine how much value of objective function will change, we have

m
Z=CBXB=i§lCB,'xBi. ...(9‘8)
But, cp, is replaced by ¢, + Acp; , therefore the new value of the objective function now becomes :
A m m- m
= Y cpixpi+(cp +Acp) Xgr= | Y cpiXxpi+Cp Xpr |+ ACp Xpr = X cgixpi+ Acp, Xpr
i=1,i#r i=1,i#r i=1
A
or z=2z+ Acp, xp, . ...(9-9)

Thus, if Ac, satisfies the relationship (9-7) , the solution Xg will remain optimal but the value of objective
function will be further improved by an amount Acg, X, [from 9:9].
The following numerical examples will make the above discussion clear.

[ 9.4. ILLUSTRATIVE EXAMPLES |

Example 1. The following table gives the optimal solution of a linear programming problem [Example 5,
page 123] )

Table 9-1
ci— 3 5 4 0 0 0
T
BASIC C X X X X X
VAR, B B 1 2 3 X4 s X6
X3 5 50/41 0 1 0 15741 8/41 -10/41
X3 4 62/41 0 0 1 —-6/41 5/41 4/41
Xy 3 89/41 1 0 0 -2/41 —-12/41 15741
z=CpXp =765/41 0 0 0 45/41 24/41 11741 (e A;

How much cs and c4 can be increased before the present basic solution will no longer be optimal. Also,
find the change in the value of the objective function, if possible.

Solution.
Case I. (Variation in cg). Since Cg =[5, 4, 3] = [c2,c3, 1], therefore ¢4 does not belong to Cp . We

have to find the range under which c4 can vary so that the solution remains optimal.



UNIT 2: SENSITIVITY (POST-OPTIMALITY) ANALYSIS / 207
Therefore, from (9-5) , we have )

Acy < z4—¢4 or Acy < Ay, ie. Acy <(45/41) .
Thus, the range over which C4 Can vary, maintaining the optimality of the solution, is given by
—©<CSc4tAcy O ~oo <cys<0+45/41 (because ¢, =0) or -0 <y £45/41 .
Also, the value of the objective function will remain the same, i.e. 2=765/41 .
Case II. (Variation in ¢3). Since (~p; , cpy , cp3) = (5,4,3)=(cy,c3, ), therefore €3 =Cpy . So we have to

find limits of Acg, when ¢m is changed to (cpy + Acp,) maintaining the optimality of the solution.
From (9-7), we have

Max. _ ] Min [_ A,
; —lec Acps S : __.L:’ A=z — C:
J SAcg J e A Al
ij > 0[ x2./ x2j <0 ij 4
-A; —A ~ ~-A
or Max, | =23 28 4 | Acp; < Min. | —=4
j X3 X35 Xo6 j 24
X3i>0 X <0
or Mj‘."" [9 -24/41 - 11/41] <Acp < M [—45/41]
s a1 - B2 = YT
xy>0LL" 5741 474l xy; <0 =641
or 0<Acg,<£45/6.

Therefore, cg, —0 < g Scp+45/6 or 4 — 0< €254 +45/60r4 < cp, < 23/20r4 < 352372,
To compute changes in the value of objective function.

Sincez=765/41,0< Acgy <45/6, xzy = 62/41 ,and using the result (9-9) , we can find the new value
2—_'7?615"1' 05&32546-51 Q

41"

Example 2. Find the optimum solution to 'the LP problem : Maximize 7 = 15x; + 45x, subject to the
constraints : x) + 16x, < 240, 5x1+2x,<162, x,<50, and X1,x20.

If maximum z= % Ci%>j=1,2, and c, is kept fixed at 45, determine how much ¢ can be changed
without affecting the above solution.

Solution. Introducing the slack variables x320,x420,x5>0 in the- constraints of the given LP
problem and then solving the resulting problem by simplex method, the following optimum simplex table is
obtained.

Table 9-2 . Optimum Table

4 G- 15 45 0 0 0
BASIC VARL Cs Xs X X, X; Xq Xs
x 45 173/13 0 1 5/18 1/78 0
x .15 352/13 1 0 -1/39 8/39 0
xs 0 477/13 0 0 ~5/18 1/78 1
NONBASIC z=1005 0 0 5/2 5/2 0
x3=x4=0

Itis observed that x,, X, and X, form the basis matrix. Here (cB1, cpa, cp3) = (45, 15, 0) = (¢, ¢y, c5)

Since c; is kept fixed and ¢i can vary, therefore an optimum basic feasible solution will maintain its
optimality if the change Ac; in ¢y satisfies the relationships :

max. |—A; min | —A;
—L1< Acp, < —1L ey =c
x>0| :, B2 y,.<0 > (" cr=cp)

0 ~5/2 ~-5/2
or max T’WJSAC‘S[ _1/39] or 0 < Ac; £195/2.

Example3. Given the linear programming problem : Maximize 7 = 3x 1+ 5x; , subject to the constraints :
3x,+2x2518, Xls4, X2_<.6, and X|,x220.
(i) Determine an optimum solution to the LP problem.
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(ii) Discuss the effect on the optimality of the solution when the objective function is changed to
z2=3x+x;. .
Solution. Introducing the slack variables x320 ,x420,x520, and then solving the reformulated LP
problem by usual simplex method, the optimum simplex table is obtained as below.

Table 9:3 . Optimum Table

BASIC Cg X Xi X2 X3 X4 Xs
VARIABLES
Xy 3 2 1 0 173 0 -2/3
x4 0 0 0 0 -2/3 1 473
x2 5 6 0 1 0 0 1
NONBASIC VAR. z=136 0 0 1 0 3 A
x3=x5=0.
It is observed that X, , X, , X; are the basis vectors in above optimum table, and
» 173 0 -2/3
B '=(X;,X,,Xsl={-2/3 1 473}
00 1
Since the objective function is now changed to z =3x; +x;, new Cg becomes (3, 0, 1) [in place of (3, 0,
]
0 173 0 -2/3
Then, B =(3,0,)|-2/3 1 473 =(1,0,-1).
00 1
Hence the new net-evaluations for X3, X4, Xs become
Ay=CgXs—c3=(3,0,1) %,Zf,o]: 1, Ag= CyXy— ca=(3,0,1)(0,1,0)=0
Ag = CgXs— c5= (3,0, 1)L—§,§, 1‘)=— 1
This shows that X enters the basis in the next iteration. Now apply simplex method to obtain the optimum
solution.
The new simplex table becomes as Table 9-4 .
Table 9-4
Cj e 3 1 0 0 0
BASIC VARIABLES Ca Xs | X1 X X3 X4 Xs MIN RATIO
(Xp/Xs)
x1 3 2 1 0 173 0 -2/3 —
X 0 0 0 0 -2/3 1 4/3 0«
X 1 6 0 1 0 0 1 6
NON-BASIC z=12 0 0 1 0 -1 A
Xy =X§ = 0 Jr ’F
xi 3 2 1 0 0 172 0
xs 0 0 0 0 -172 3/4 1
x2 1 6 0 1 1/2  -3/4 0
NON-BASIC 72=12 0 0 172 3/4 0 « A
x3=x4=0

Thus optimum solution is obtained as : x; = 3,x=1,maxz=12.

EXAMINATION PROBLEMS
1. Forthe linear programming problem : Max. z = 5x; + 3%, subjectto 3x; + 5xz < 15, 5x1 +2x% < 10, and X1 , X2 2 0.
find an optimal solution. Hence find how far the component ¢y of the vector ¢ of the function z= ¢x can be increased
without destroying the optimality of the solution.
2. Inalinear programming problem,Max. z=¢x, Ax=b,x 20,
obtain the variations in ¢;which are permitted without changing the optimal solution. Find this for the problem.
Max. z = 3xq + 5xp, subjectto xq + Xz < 1, 2x;+3% <1,and Xy, %20 '
{Meerut (B.Sc.) 90]
[Ans. x; =0, x =1 ,max.z=5;Ac; €2 and-2 < |
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3. The following table gives the optimal solution to a linear programming problem.

Table 9.5
- 2 3 1 0 0
BASIC VAR. Cs Xp X, X, S, S, S3
X 2 1 1 0 172 4 -172
X2 3 2 0 1 1 -1 2
z=8 0 0 3 5 5 A

How much c3 can be increased before the present basic solution will no longer be optimal. If o3 is increased indefinitely,

find the sequence of optimal basis.
4. Solve the following L.P.P. by (i) Graphical method and (ii) Simplex method :

Max. z = 3x; + 5x2 , subject to the constraints :3x; + 2 < 18, x; < 4, x<6,and X1, X2 20.
If the cost coefficient of x; is kept fixed, find the range for the cost coefficient of x, without affecting the optimal solution.
[IAS (Maths. 96]

5. Given a linear programming problem : Maximize z=3x;+5x; subject to : 3x; +5xp < 15,5x; +2x2 <10, xq,

X;,X 2 0.

(i) Find an optimal solution.

{iiy Hence find how far the component c; of the vector ¢ of the function z= cx can be increased without destroying the

optimality of the solution.
[Ans. (i) X = 20/19 , xp = 45/19 , max. z=235/19; (ii) -16/5 < Acy < 5/2]

IZS. CHANGE IN THE COMPONENT ‘b/ OF VECTOR b J

If any component (say, b)) of vector b=(by,b2..... by, ..., b, is changed, the optimality conditions
Aj=2zj—c¢; 2 Oarenot affected for the optimal solution Xg of AX=b , X 2 0.
On the other hand, any change in vector b will affect the optimal solutionXg (Xg =B~ 'p > 0).
Furthermore, the feasibility of the new solution &g can also be affected because of arbitrary changes in

vector b.
Suppose that a component b; of vector b is changed to b, + Ab; so that the new vector b becomes

B=[b).bs,..., (B +AB), ..., by) ..(910)
Now, our aim is to find out those limits under which Ab; can vary so that the feasibility of new solution
f;=B" bis preserved and B remains the optimal basis.

Bll BlZ"'BIl"'B]m
BZI BZZ le BZm

-1_ _1: :
Let B —(BI’BZ""’BI""’B”’)_ Bai  Bi---Bir-e Bim

Bt Brz - Bt - Brom
Now, from (9-10) , the new right-hand side of AX = b becomes
b= by ,byy .o sbyy .o, bl +10,0, ..., Ab, ... ,001=b+1[0,0,..,Ab,...,0] ..0911)

Therefore,
2,=B'H=B"[b+(0,0,...,Ab,...,0]=B"b+B" (0,0, ..., Ab;, ... .0)
or 23 =XB+(B1 N Bz Y aee s Blv e Bm) (0,0, cee ,Abl, ,0)=XB+B[Abl
or xp; = xg; + By Ab; ..(9:12)

Since the feasibility of & is preserved, from (9-12) we have

Xgi + Bil Abl 20 .
and x5 2 0 i=1,2,...,m .(9-13)
Letting dj = x; , A= Abjand d} = By , the result (9-1) of lemma gives
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max [ min. _,
i [-—'] SAp < [ 'J ..(9:14)
Bu>0 Bu Bi<0 B

The following numerical examples will make the above discussion clear.

| 9.6. ILLUSTRATIVE EXAMPLES |

Exampled. The optimal Table 9-1 for the linear programming problem :
Max. 7 =3x; + 5x; + 4x5 , subject to
2x;+35, <8, 2x+5x<10, 3x +20+4x3<15, and x,x,x,20.

is given in the example of Section 9-4 . Find the range over which by can be changed maintaining the feasibility
of the solution.

Solution. From Table 9-1 , we have

_ —(30 62 89 —
B= 0 %% X = .8.3 ). b=6,10,15)
o 15/41 8/41 10/41
and B " =| -6/41 5/41  4/41
-2/41 -12/41 15/41

Letting Ab, = Ab, , gives

max. min
; [—50/41 —62/41}SN)2S ; [—89/41]

By > 0 8/41 ° 5/41 By < 0 - 12/41
50 62 . 189} . 25 89
—— . — | <L < —_ —_— < < —
or max.|: g’ 5:’ <Ab, < mm.[lz}, ie. 2 S Ab, < TR

Example5. Given the following linear programming problem :
Max. z=—x; +2xy— x5, subject to
3X1 +X2‘:X3 < 10, - X +4x2 + X3 2> 6, Xy + X3 34, and X1 5 X2, X3 20.

(a) Determine an optimum solution to the problem.

(b) Determine the ranges for discrete changes in the components b, and bz of the required vector so as to

8 8 4 2 3 q
maintain the optimality of the current optimum solution.
(¢) Determine the effect of discrete changes in those components of the cost vector which correspond to

basic variable. [Meerut M.Sc. (L.P.) 93]
Solution. (a) Introducing the slack variables xg 2 0,xs5 2 0 in the first and third constraints, surplus

variable x¢ > 0 together with an artificial variable a; 2 0 in the second constraint, and then solving the
resulting problem by usual simplex method, the following optimum simplex table is obtained :
Table 9-6 . Optimum Table

G- -1 2 -1 0 0 0 -M
BASIC Cs X X X, X3 X4 Xs X¢ Ay
VAR. By B2 (B3)
X4 3 0 -2 1 -1 0 0
X3 0 1 1 0 0 0
X6 0 10 i 0 3 0 1 -1
c=8 01 0 3 0 0 M e

Thus, optimum solution is x1=0,x=4,x=0,max.z=8 . Ans.

(b) The individual effects of changes in b, and b, , where b = (b1, by, b3), B™ ' = (B}, By, B3) = X4 X5 Ajy)
such that the optimality of the basic feasible solution is not violated, are given by
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max [_ . min _
i [—i} <A< [——1’1]
Ba>0 Bu By < oL Pu
For, [ =2 , consider the second column of B to get
-5/2<Ab, < :—? ;or —5/2< Ab, <6
and for I = 3 , consider third column (i.e. X¢) of o get
Max. ::1—10- < Ab; or Ab; 2 10.
Thus—5/2<Aby < 6 and Ab; 2 10. Ans.
(c) For the change in the component of € corresponding to basic variables, use the relationship :

max [_ A. min [_A,
j [——J] < Acg, S [-1]

Therefore, we have

(i) max :lé—_—lz] < Acy or Acy 2 —2

(ii) max _Tl] < Acy < min[—:—%,:—ﬂ or —1/3 < Acy < 3/2

(iii) max :11‘73:43] < Acs or Acs 2 —1/2.
Example 6. (a) Discuss the effect of discrete changes in the requirements (on the right side of the
inequalities) for the following linear programming problem :

Max. z = 3x; + 4xy+ x5 + Tx4 , subject to the constraints :
8x; +3xy+dx; + x4 <7, 2%+ 63+ X3+ 5x4 <3, %) +4x, + 5x3+ 2x4 < 8, and x1 , X , X3, %4 20
[Meerut M.Sc. (Math.) 92]
(b) Discuss the effect of discrete changes in C on the optimality of an optimum basic feasible solution to

the above LP.P.. ,
Solution. Introducing slack variables xs , xg and x; , we get the following starting table :

Starting Table
> 3 4 1 7 0 0 0
BASIC Cp Xp X; X, X3 X4 Xs Xs Xy
VARIABLES
xs 0 7 8 3 4 1 1 0 0
s 0 3 1 5 0 1 0
X 0 8 1 .4 5 2 0 0 1
z=0 -3 - -4 -1 -7 0 0 0
Performing usual simplex routine we get the following optimal table :
Optimal Table
ci— 3 4 1 7 0 0 0
BASIC Cs Xp X X, X, X, Xs  Xs X;
VARIABLES :
Xy 3 16/19 1 9/38 172 0 5/38 -1/38 0
Xy 7 5/19 0 21/19 0 1 -1/19 8/38 0
X7 0 126/19 0 59/38 9/2 0 -1/38 -15/38 1
z=83/19 0 169/38 172 0 1/38 53/38 0
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(a) From above optimal table, we have

16 5 126

_ o 5/38 ~1/38 0
XB:[E’E’F]’b=[7’3’8]’ and B =(Xs,Xq,Xp)=| 1719  8/38 0

~1/38 -15/38 1

Thus, the separate range of changes in b, , b, and b3 where b= (b, , b, , b3) such that the new basic
feasible solution still remains optimal, are given by

@ =0 < Ab < min %g%} or —32/5 < Ab, < 5;

@) LS Ab, < min {%%ﬁ} ~5/4 < Ab, < 84/5 ;

(iii) _—216/—19 S Aby  or —126/19 < Abs, having no upper bound for discrete change Ab,
in the component b;.

Thus, above limits for changes in b will specify the required ranges so that every new basic solution will
remain optimum feasible.
(b) The cost vector corresponding to the basis is Cg = (3, 7, 0).

If we write the cost vector as C= (¢, ¢;,¢3, ¢4, Cs, Cs , ¢7) and the basis cost vector as Cg = (c; , ¢4 , ¢7),
then one can classify the changes in ¢;’s in two ways :

(i)changeinc;whenj =1, 4, 7; and (ii) change in cjwhenj=2,3,5,6.

For (i), we know that an optimum basic feasible solution will maintain its optimality if the change Acy in
cy satisfies :

Max [-4; < Acy < Min 1
x,q- >0 xﬁj x,,j <90

Xk
Thus the required limits for changesinc, , ¢, , ¢; are given by

. ~-169/38 -1/2 -1/38 -53/38
< < —= —_ < < :
() Max | =782 S22 S8 < Ay < 2800 —1/5 < Aqy < 53;

" [-169/38 —53/38] _ -1/38 - 169
—_— =0 L < —=L=2 —_— <L < .
(ii) Max._ 21/19 ' 838 } S Ay S 700 or — =< Acy £ 172

(- 169/38 —1/2 . [-1/38 —53/38
—Z 2 e L < —_—
and (iii) Max. 59,38 9/2] < Acy; £ Min [ ] o

—_ < <
-1/38"-15/38 1/9 < Ac; £ 1.

For (ii), we know that the change Acy in ¢, must satisfy the upper limit Ac; < (z; — ¢p) in order to maintain the
optimality of the optimum basic feasible solution. Thus, we have

Acy < 169/38, Acy < 1/2, Acs < 1/38, and Acg < 53/38 .

Here we observe that there are no lower limits for changes in the components ¢, , ¢3, ¢s and cg .

EXAMINATION PROBLEMS
1. Consider the LP problem : Max. z=— x, + 3x3 — Zx5 subject to

3% ~ X3+ 2X5 <7, 2X + 4X3 < 12,- 4% +3x3+ 8x5<10,and x;,, X3, X5 2 0 .
The optimal table of this problem is given below :

i 0 -1

3 0 -2 0
BASIC Cg Xp X, X, X; X, Xs Xs
VAR.
X3 -1 4 2/5 1 0 1/10 4/5 0
x3 -3 5 1/5 0 1 3/10 2/5 0
Xg 0 11 1 0 0 -1/72 10 i
z=11 1/5 0 0 4/5 12/5 0 A
(a) Formulate the dual problem for this primal problem.

(b) What are the optimal values of dual variables ?
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(c) How much cs be decreased before x; goes into basis ?
(d) Howmuch canthe '7'in firstconstraint be increased before the basis would change ?
[Ans. (a) Minzy,=7w; + 12w, + 10ws, subject to the constraints :
-3wi+2wa+4ws < 1, —wi+4we + 3wz 2 3,-2wy - 8wz < 2, wy, wp and wa are non-negative.
(b) wy=1/5, wo=/4/5 ,w3=0.
(c) change cs to cs+ Acs suchthatAcs 2 12/5
(d) 7 changesto 7 + Aby such thatAb; < - 10 ]
Consider the LP problem : Max. z=2x; + X + 4x3 — X4 subject to the constraints :
X1+2X+X3—-3X358, - X+ X3+2x3 < 0,21 + Txp - 5x3 — 10x4<21,and xy , X, X3, X4 20 .
The optimum solution to this problem is contained in the following simplex tabie.

G- 2 1 4 -1 0 0 0
BASIC Cs Xp X, X, X, X, X Xs Xy
VAR.
X1 2 8 T 0 3 1 1 -2 0
x 1 0 0 1 -1 -2 0 -1 0
x 0 5 0 0 -4 2 -2 3 1
z=16 0 0 1 1 2 3 0

For each of the discrete parameter changes listed below, make the necessary corrections in the optimum table and solve
the resulting problem :

(a) changecitol, (b)changebto (3, -2, 4) (c) change by to 11 (d)changeCto(1,2,3,4)
[Hint. (a) ¢y changes from 210 1, and ¢; € Cg, Revise the optimal table accordingly and compute new A/s as (0, 0,
-2, 0, 1, 1, 0).Obtain the new optimum solution by improving the simplex table to get the new optimal solution ;
x1=0,%=8/3, x3=8/3, x4 =0andmax z=40/3]

(b) whenb changes from (8 021)to (3—2 4) the new values of current basic variables are obtained by Xg =B~ "bas

Xy 1 2 o) 3) (-1
% |=| 0 -1 of-2]|=| 2
x| -2 4 1|| 4| |-8

Since current basic solution is optimal but infeasible, therefore use dual simplex method.

It wili be observed that all elements of the departing row are non-negative, by dual simplex method, the given problem

does not possess any feasible solution.

(c) By dual simplex method new optimal solution is obtainedas : x; =49/2 , % =x3 =0, X4=11/2 ,max z=87/2.

(d) Using simplex method obtain the new optimum solution : xy =0, X2 =21/2, x3 = 11/10, X4 = 47/10 and max. z
=431/10).

Find out the limits of variations ofthe costs ¢ , ¢, 3, €4, &5, Cg and the second element b of requirement vector of the

following L.P.P. for which the optimal solution remains optimal :
Max. z=- X, + 3x3 — 2x5 subjectto

X1+3% —X3 +2X5 =7

—-2x%+4Xx3 + X4 =12

—4x+ 3x3 +8xs +x=10 :
and x20,j=12..,6. [Meerut M.Sc. (Maths.) 94]

[Hint : First find the optimal solution, Then proceed as solved examples given earlier.]
Discuss the effect of discrete changes in the requirement vector on the optimal solution of the following linear
programming probiem :
Max. z=3x; - X — 2x3 , Subjectto — x; + 33X+ 2x3< 7, 4% —2X2 <12, 3x; - 4x + 8x3 <18 ; X1, X2, X3 2 0.

[Delhi B.Sc. (Maths.) 93]
[Ans. -3 <. Aby < 45,-18 < Abp < 6]
For the following L.P.P. find the separate ranges of variations of right hand sides of the constraints consistent with the
optimal solution : :
Max. z=— Xy + 2xp — X3, Subjectto 3x; + X — x3 < 10, — X; + 4Xo + X3< 6, Xo + X3< 4, X1, X2, X3 2 0.
[Hint. Proceed as solved example]
Determine the optimal solution to the following linear programming problem :
Max. z = 15x; + 10x; , subjectto 5x; + 3x2 < 200, 2x1+2x; < 100, x1,x% 2 0.
Find the range for the discrete changes in the first component of the requirement vector so as to maintain the optimality
of the current optimal solution.
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7. Following is the optimal table of an LPP. :

BASIC Xg X, X, S A A S
VAR.
i 3/5 1 0 175 3/5 -1/5 0
x 6/5 0 1 ~3/5 —4/5 3/5 0
52 0 0 0 1 1 -1 1
2=12/5 0 0 1/5 M-< M-~ 0 —A

Usmg sensmwty analysis find the optimal solution to the new problem obtained by (i) changing ¢ to ¢ + ¢’, where
=(-5, 10) ; (i) changingbto b + b’, where b’ = (3, 4, 1) [Roorkee M.Sc.| (OR) 96]

| 9.7. CHANGE IN THE COMPONENT ‘a;/ OF MATRIX A | |

Let us assume that the component g;; in the ith row and jth column of matrix A is changed to (a;; + Aay) .
Furthermore, such variation can be made in two possible ways :
(1)  only thata;;is changed to a;; + Aa;; which does not belong to the basis matrix B,
(ii) only thatayis changed to a;; + Aa;; which belongs to the basis matrix B.
We now discuss these two cases one by one.
Case 1. (Variation ina; whena;; ¢ B)
If a;; ¢ B, then the change in such a;; also does not affect the optimal solution XB =8"'b.
Thus, it only remains to observe the effect on the optimal conditions (viz. zj —cj 2 0) when g; ¢ B is
changed to (a;; + Aay;) ,

Let _l_[BlvﬁZv""Bm] and aj=[a1j,a2j,...,amj]
Thereforc .
[alj,aaj, .. (a,-j+Aa,-j),...,amj]=[alj,a2j,...,a,~j,...,a,,,J]+[O O ‘J""’O]
—aj+[00 »Aagy;, ..., 0]
and 2= CyB a,._c,,B“[a,+(oo gy, ..., 0)]

-CBB , a,+cBB 10,0, ... ,Ag, ..., 0]
=zj+CB (B] . Bz y eney B,’ s eeey ﬁm) (0, o,... ,Aﬂ,‘j, vee ,0)
=2zj+CgB; Aa
Thus, the optimality conditions will remain satnsﬁed 1f—
z,-cj 20 or [z+CsPiAgyl-c;20
( )+Aay (CB Bx) 20

and , origina.l]y 5—¢; 20 ~(915)
Since the conditions for using the result (9-1) are satisfied in (9-5), so we have
Max, Min
—-A -
i [—l] <Agy < [ﬁ} . {9-16)
Cgfly > 0 Cabs gy < 0 L B

Also, Ag;;is unrestricted if Cg3; =

In this case, neither the optimal solution Xg = B! b nor the value of the objective function (z = CgXg)
changes.
The following example illustrates the above discussion.
Example7. Now, from the example (Table 9-1) which is continuing in this chapter, we have
¢ B,B=(X,,X;,X)),
15/41 8/41 -10/41

and Tl = (X4, Xs X = By, B2, B3) =|-6/41 541 4sa1],cy=15,4, 3.
-2/41 -12/41  15/41
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We compute
15 -6 -2)_45 -127_24
C‘*B"(543)[ "41 41 ) 41 Cob2= (543)[41 TR } 41
10 4 15| 11
C = -
=43 T a0 = ar
Now, using the result (9-16) for] = 4, we have
~Ay . 45/41
b, < Aay < o (since all Cgf; > 0) or ~25/41 < Aapy < oo
or —1 < Aajy < oo. _ (1)
Similarly, 8 < Adyy < oo or =12 Aay < oo (i)
Cb,
and -1< Aa34 < oo, (lll)

Case 2. (Variationing; € B)

Ifa;e B is changed to a;; + Aay; , then the basis matrix B will certainly change. Consequently, Xg =B~ b
and z; = CgB~ aj will also change.

Let B be the new basis matrlx obtamed after a;; € Bis changedtoa; + Aq;; .

Then we shall first find out B!

Let =(by,ybz, e bp,y e m) andB '=(B;.Bs,.... B)
if aj-b , then, (ay;, ag, ... s @iy oo s Q) = b1y by oy bip s oo Bgp) (since a;; = by,)
and a;+Aay= by, + Ady. ~(917)
Now, the new basis matrix 8 is given by =[by,b,,. Sp yeee s bl
=[5y bap s e s byt Ay s bl (9-18)

Since Q ¢ B can be expresscd as the lmear combmatlon of vectors by, bz, ... ;bp,eee y by, in B,

therefore
pz}\«]b1+}vzb2+ "'+}"pbp+"' +)"mbm 2(7\«] ,;\Q, ,7\7,,".. ,)\am) (bl ,bz,b3,... ,bm)

=BAwhere A=A, Ay, s M) - .(919)
Thus, from (9-19) A= B"ﬁ ’
—(B1,Bz,...,B,-,...,Bm)(b,,,,bzp,.. by, +Aaj, ..., byy)  [from(9-18)]

151 Bibip + Bi Aau = B—l bp + Bf Aaij

or. A =ep+P; Ay ...(9-20)
p m-p
[Since Be, = [by, bz, ... ybp s eee s bl (0, 0,..,1,0,0,...,0)=b,,therefore B! b,=¢,]
Now, from (9-20), we have P m-p .
(X] N 7\/2 g eon s }\7, 3 vas m) (0 0 0) + (B],, Bz,', coey ﬁpi’ cevy Bm,‘) Aa,j
Equating the pth element and kth element on both 51des we have
A, =1+Bp; Aay
and pii Y (921
7~k =0+ By Aa ©21)
Now, B exist only when B is non- -singular (i.e. | Bl 0). So we must have A, #0 .
Therefore, from (9-21)
1+ Bpi Aa,J #0 , Or Aa,j - I/Bpi . .(922)
Now, we can introduce a new matrix E called the elementary matrix, which differs from an identity matrix I, in

the pth column only.
The pth column of matrix E can be obtained from (9-19) as follows :
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Q -(l1b1+7\2b2+ x%b +. ..+A.,,,b,,,)

or b,=-b b e ———b
T
1
=[—i—,—g,...,+l—p,-...,-—A;J(b1,bz,...,Sp,...bm)
-7 B -(9:23)
- (M N 1 A
where =|l—,-2=, ..., +—,...,~— |=the pth column of E.
" [A,, KTy AJ P
Now, r - 1
ow 10 ...0 M 0
01 .. 0 ~My o 0
00 .. 0 -MA o 0
E=[0 0 .. 1 =A_1/A, 0 0
00 0 /A, 0 0
00 0 g 0
00 .. 0 -—A/A 0 .. 1

=(€15€25 000 5€p_ 15T 5€p415-
Therefore, BE=8 (e, , e, ,... s€p_1, T, € lp, ,e,,,)p (ﬁel,ﬁez, ,ﬁep l,ﬂn,ﬂep+1, , Bey)
—(blabz’ bp lvbp’bp+1"" m)
Smceﬂn = by, from (9-23), and Be; = (by, by, .. ,B,,,...,b,,,) 1,0, ...,0)=by , etc.
BE=B. ..(9-24)

From (9-:24), we get A

BEB HY=BB '@ 'B)EB '=B)"'1 = B)'=EB'. ...(9:25)
Thus, new solution becomes R, = (ﬁ)‘1 b=(EB ") b=EX,

A

A
ka=ka-ipr,(k¢p,k= 1,2,...,m)

and by matrix transformation formula, we have
A

XB,
Xpp = If ,k=p.
A _AayBy
Bk = XBk 1 Aa; By
A
Bp 1+ Aa,j Bpi
But, feasibility and optimality both should be preserved, Therefore, we find the limits of Ag;; for feasibility and
optimality separately. Then the intersection of the limits for both the conditions will be /Ehe required result.
() When Ry isfeasible : If & preserves the feasibility, then we require Xg, 20, Xp, 2 0.
Therefore, from (9:26) , we have

pr,(k;tp,k:l,Z,...,m)

Using (9-21) we get .{(9:26)

A
X — —I—IEAH;B—"E— >0,k=1,2,3,...,m, k#p
o (927)
— B S =
T+Aaq, B, = k=P

If Xgp # 0, then we must have
1+Aa;B,>0. ...(9:28)
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Also, we require from (9-27) , that xg (1 + Aa; Bpi) — AayBrixg, 2 0,k#p

xpr+ Baj; [xp Bpi—xgp Bl = 0, k#p

or xp 2 0 (originally) +(5:29)
The result (9-1) of lemma can be used by taking
dj=xpy , df =xpy By — xg, Pri =P (say), A= Ag; .
Thus, we shall have the range of Ag;; as
Max ( _ , Min | _
Bk XBk
k#p I: P ] < Aa,, < k#p [T} Whel'ePZka Bpi "pr Bki . (930)
P>0 P<0
(ii) When optimality for ﬁn is prmrved For optlmallty, we must have zq —¢; 20.
But, zq —Ccg= CBB aq =Cy (EB™)) ag—¢,
=Cg(EB” aq) cg=Cg (EXy)) ~¢,. [from (9-25)]
[ M ]
xlq - i;qu
Ao
Yp-1.9~ A, *pq
X,
=(CBI,CBz,...,CBP,...,CBm) 24 —Cq
Ay
p+l.q~ AP qu
Xmq ~ Equ
m m Xy, C
= 3 _prq 3 +2P4 Bp _
k=1 kep BTTY k=l,k¢pchkk ,
Aag;; x,
A '} . . .
or Z,—C,=(z,—¢C —ti%pa_ Cgf; (after simplification).
q q (q q) 1+Aaprz BBI p
Aa;;
We now require for optimality that (z, — ¢ ) — —i%pa_ CeP; 20, ie.
1+ Aa;j Bpi
or (24— cg) (1+ Aay; By) — Aayx,, CPl; 2 0
and (Zq - Cq) + Aaij [Bpi (Zq - Cq) — Xpgq Cgfil 2 0 (9.31)

zg— ¢4 2 0 (originally)
Using the result (9-1) of Lemma by taking d;=z,— c,, A= Aay, d = B,,; (24— ¢5) — Xpq Ca P;i =P (say),
we get

s [-’—Al} <Aay< g [ﬁ] where A, =z, ¢ (9:31)
q SAa; < ¢ =Z;—Cqe (9
p>ol P Y pcol P *

Finally, the required limits for Aa;; are contained in the intersection of (9-30) and (9-32).

Q. 1. Find the limits of variation of ax so that the optimal feasible solution of Ax=b, x>0, max z=¢x remains optimal
feasible solution, when a is not a vector of the optimal base.

2. Discuss the changes in the components aj of the vector a; € B for the given L.P. problem : max z=cx , subject to
Ax=b,x20.

Example8. The optimal solution of the linear programming problem :
Max. z=10x; + 3x, + 6x3 + 5x4, subject to the constraints
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X +2%+x,<6, 3x+2x355, x+4x3+5x<3, and x;,%,x,x20.
is given by the final simplex table given below ,
, Table 9.7
G- 10 3 6 5 0 0 0

BASIC VAR. Cp Xp X, Xz X; X, S, S, S3
X7 3 56/27 0 1 -22727 0 5/9 -5/27 -1/9
X 10 573 1 0 2/3 0 0 173 0
X4 5 5/27 0 0 26/27 1 -1/9 1727 2/9

z=CpXp=643/27 0 8727 0 10/9 80/27 7/9 «A;

Compute the limits for a| so that the new solution remains optimal feasible solution.
Solution. Let us compute the limits for Aa;; .Here,i=1,j=1,p=2 (a3= 1))
Now, we have :

56 5.5 25
xg1B21 = xg2B11 =§7X0—§X’9‘=-5<0

5 5 1 5
xg3Ba1 — xpoBa =§><0-§X(-§)='2‘.7>0 .

Therefore, from (9-30) , we get

5 27 56 27 56
-2 A<« < — 22 |_4£ —-1< < 22
275 _Aa“_ [ ) or l_Aa“_ZS.
Also, we have

1 10
+10X0+5 -9)_9
20

=57 < 0, B21 As—xp5 CpPp; =0-0=0

10
=27 <0, B2y A7 — x7CgP; =0-0=0.

Cyf =3
( 2
Ba1 A3 —xp3CgP1 =0 —

1
Ba1 A —xz6 CaBy =07
Therefore, from (9-32), we compute

[N .

X

w]

1

—eo<Agy < min.['—szxﬁ —'&x_—z’—] or —o<Aa;£41/10.

27 20 ° 27 10
Since (A) and (B) are to be satisfied simultaneously, we get—1 < Aa); < 56/25 .

«.(A)

...(B)

EXAMINATION PROBLEMS

1. Given the L.P.P.: Max. z= 10x; + 3x; + 63 + 5x4 , subject to the constraints :
X1 +2%+X<6, 3X+2x3<5 X+4x3+5x<3 and Xx3,X,X3,X%=20.

(a) Determine an optimum solution to the problem.

(b) If the element ay1 is changed to a;1 + Aayy, determine the limits for discrete change Aaqy so as to maintain the

optimality of the current optimum solution.

(c) Determine the separate ranges for discrete change in a13, a23 and as3 consistent with the optimality of the solution

obtained in (a).
[Ans. (a) x;1=5/3, % =56/27,x3=0, X4 =5/27 ;max. z= 643/27 (b) -1 < Aayy < 56/25

(c)—41/15 < Aayz, o< —41/40 S A2 < =,—82/21 2 Aadgz < J
2. Giventhe L.P.P.: Max. z= 3xy + 4x> + 2x3 + 4X4 + 2Xs + 5Xg, subject to the constraints :

x1—x2+x3+x4+2xe=10,2xz+2x4+x5+3xs=6,x,+4xz+2xa+5x4+x5+9xe=25,and x20,j=1,2,...6.

(a) Determine the optimum solution to the problem.

(b) Discuss the effect of each of the following post-optimal discrete changes in the activity coefficients (taken one at a

time) on the optimality of the solution obtained in (a) :
(i)  Change a4 to 1; (i) change axs to 2; and (iii) change as1 to—1.
[Ans. (@ xy=1,%=0,x=9,x=3x5=6,x=0 maxz=33
b) (x3=7,x%=0, X3=0,%=3,x5=3,X%=0,max=2=39
(i) Optimum solution is not affected)]
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| 2.8. CHANGES IN THE STRUCTURE OF L.P.P. |

We shall now consider the post-optimal effects when some variable (s) or constraint(s) is/are added to or
deleted from an L.P.P. after having obtained its optimal solution.

Here we shall discuss the post-optimality analysis for the following simplest type of structural changes only :

(a) Addition of a new non-negative variable (b) Deletion of an existing non-negative variable

(c) Addition of a new constraint, and (d) Deletion of an existing constraint.

However, analysis involving multiple additions or deletions can be easily handled by repeated application
of the methods discussed for the simple cases. The first type (a) is the easiest to deal with.

9-8-1 Addition of New Variable

In this section, we want to discuss the necessary computation which have to be performed, if a new variable is
to be introduced in a linear programming problem whose optimal solution is known. Here, we shall answer the
question~‘Is there any way to obtain the new optimal solution without restarting the simplex method from the
very beginning ?’ ,

Let us consider the L.P.P. : Max. z=CX, s.t. AX=b ,X 2 0 where C,Xe R",be R"and A is an
m X n activity matrix.

We assume that an optimal basic feasible solution Xg has been obtained. We now wish to discuss the effect
on the optimality of this solution if some new non-negative variable x,, , 1 » having activity column a,, , ; and
corresponding cost coefficientc, , 1 , is added to the given problem.

Obviously, it is only required to compute :

Xn1 =B’ ap,1and A, SEZne1 =41 =C Xni1— 6y s
wheiw 5 is the current optimal basis and Cy is the associated cost vector.

Then, two possible cases are : (i) A, 4 1 = 2,41~ Cpeg 2 0, (ii) Ay <0

Obviously, in case (i), the current optimal basic solution (Xg) remains optimal for the new problem. While
in case (ii), the current optimal solution (Xg) may be improved further by introducing X, , ; into the basis. The
usual simplex routine can be applied, considering the optimal table of the original problem augmented by an
(n+1 )'h column vector X,, ,  as the starting table.

Addition of new variable is really just a special type of simultaneous changes in the objective function
coefficients (c;) and the coefficient a;; of a corresponding non-basic variable. Consequently, the addition of a
new variable can only affect the optimality of the problem.

This means that the new variable can enter the solution, if and only if, it improves the value of the
objective function. Otherwise, the new variable becomes just like a non-basic variable (having zero value)

To explain this point, we discuss the following numerical example.

Example 9. Consider to addition of a new variable xs to the following given L.P.P. (called the original
primal) : '

Max. z, = 3x; + Sx,, subject to
X + x5 =4
3xp+2x +x4=18 ..(9:33)
Xy, X,X3,% 20
so that its revised form becomes :
Max. z,=3x; + 5x, + Tx5, subject to
X + X3 +x5= 4
3x; + 2x, +x4+2x5=18 : ...(9:34)
X|,X,X3,%,x52 0
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Solution. By simplex method, we obtain the final table for optimal solution of problem (9-33) as

follows :
Optimal Simplex Table 9-8

G- 3 5 0 0
BASIC Cp Xs X, X, X3 X,
VARIABLES
x3 0 4 1 0 1 0
x 5 9 3/2 1 0 172
z=CpXp=45 9/2 0 5/2 “ A

The optimal solutionis:x; =0,x,=9 ,x3=4,x4=0, withmax. z, =45 .
The optimal solution to the corresponding dual problem can be read from the above table as :
w;=0,w,=5/2,w3=9/2,wy=0, withz,=45.
We now return to the revised problem (9-34). The first question to be answered is whether
x1=0,x%=9,x=4,x=0, x5 =0 (by appending xs =0 to the previous optimal solution), will provide us
the new optimal solution . 4

This question can easily be answered by refering to the dual problem. The complementary dual solution
remains the same : w; =0, w, =5/2 . The only change in the dual problem is the addition of new constraint,

w; + 2w, 2 7, which does not hold for this solution. Since the dual solution is not feasible, the corresponding
primal solution is not optimal. So xs must enter the solution with positive value. To obtain the new optimal
solution, we start by modifying the previous optimal table to include xs . The changes in the optimal table are
obtained as below :

Table 9.9
G- 3 0 0 7
BVAAS;F G Xs | X1 X2 X5 X4 Xs=B 'ag (XL:/H;.‘)
X3 0 4 1 1 0 1 0 Y1)_[1* 4/1 «
= s 9 |3 Y, (0 v 2)(2)_( ! ) 9/1
2=CpXp | 972 0 52 As=CpXs - cs « A
=45 d =(0,5(1,1)-7=-2

We can further apply regular simplex method with X as the next entering basis vector.
By min. ratio rule (min Xg/Xs ; Xs > 0), we find that the key element is 1*. Consequently, the vector X;
must be removed from the basis and the new transformed Table 9-10 will be obtained as follows.

Table 9-10
¢ 3 5 0 0 7
BASIC Cs Xp X, X, X3 X4 Xs
VARIABLES
xs 7 4 1 0 1 0 1
X2 5 172 1 -1 172 0
z=53 132 0 2 52 0 payy

A= CoX -, = (71, 5) (1, 1/2) = 3=13/2, Ay = Xy —c3=(7,5) (1, 1) - 0=2,

Ay=CgXy—c4=(7,5)(0,1/2)-0=5/2.
Hence, the new optimal solution willbe x; =0 ,x,=5,x5=4, withmax. z=153.
Example 10. Let the optimum simplex table for a maximization problem (with all constraints of < type)

be
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> 5 12 4 0 -M
BASIC Cs Xp X X; X, X, A
VARIABLES ,
x 12 8/5 0 1 -1/5 2/5 -1/5
x s 95 1 0 /5 1/5 2/5
z=141/5 0 0 3/5 29/5 M=2/5 |e 4

where x4 is slack and a, an artificial variable. Let a new variable x5 2 0 be introduced in the problem with a

cost 30 assigned to it in the objective function. Also suppose that the coefficients of xs in the two constraints are
5 and 7, respectively.

Discuss the effect of this addition of a variable on the optimality of the optimum solution to the given
problem,

Solution. It is observed from the given table that B_l=(x4 ,Ay) (2/5 - VSJ and as=[§J is the

‘ 1/5  2/5
activity vector associated with xs .
=g la. —[2/5 —1/5Y(5)\_( 3/5
Now, Xs=B Tas=| s 2/5) 77 19/5)'
Since the cost vector associated with current XpisCy = (12, 5), thérefore
3/5

As=CaXs—cs=(12,5)[ 92 |-30=—19/5 <0.

Alsosince A; < 0, the optimality condition is violated 4s X; enters the basis. The new simplex table now
becomes :

= 5 12 4 0 30 -M
BASIC | Cp Xg X; Xz X3 X, X;s A1 | MIN.RATIO
VAR. Xp/Xs
x 12 8/5 0 1 -1/5 2/5 3/5 ~-1/5 8/3
Xy 5 9/5 1 0 /5 /5 [19/5] 2/5 9/19
z=141/5 2 0 3/5 29/5 -1 ?/5 M-2/5 «4;

Final Iteration. Remove X, and introduce Xs .

= 5 12 4 0 30 -M
BASIC Cy Xp X X, X3 X4 Xs Ay
VAR.
X2 12 25/19 -3/19 1 -8/19 7/19 0 -5/19
X5 30 9/19 5/19 0 7/19 1719 1 2/19
z=30 1 (] 2 6 0 M« 4;

Hence the new optimal basic feasible solution becomes :
x1=0,x=25/19,x;=0and x;=9/19 , max z = 30.
Example 11. (a) Discuss the effect of adding a new non-negative variable xg in the L.P.P, of Example 6
(a), on the optimality of its optimal solution. It is given that the coefficient of xg in the constraints of the
problemare 2, 7, and 3 respectively; the cost component associated with xg being 5.
(b) Explain the situation when we have ¢g = 10 instead of 5.
Solution. (a) The new L.P.P. becomes : Max. z = 3x1+ 4%+ x5+ Txy + 5x;, subject to the constraints :
SX] +3XZ +4X3 +tX4 +2X3 <7
le +6x2 +X3+5X4+7X8 <3



222 / OPERATIONS RESEARCH

X1+4XZ+5X3+ZX4+3X8 <8
x5 20,j=1,234,8.

Instead of re-solving this new problem we wish to use the information contained in the current basic solution
xg=(16/19,5/19, 126/19) and observe whether it still remains optimum for the new problem.

The activity vector associated with xgis ag (2,7, 3). From example 6 (a), we take
5/38 -1/38 0
B’ ={- 1719 8/38 0]
-1/38 -15/38 1
and then calculate the entering vector Xg =B~ ! ag=[3/38,26/19,7/38]
Since the cost vector associated with the current xg is Cg = (3, 7, 0) , we have
Ag=CpXg—cg=(3,7,0)(3/38,26/19,7/38)-5= 183/38 > 0
Since Ag > 0, the optimality of the current solution xg is not affected by the post-optimal addition of new
variable xg .
(b) If we have cg =10 instead of 5, then we would have obtained Ag=—7/38 indicating that the

optimality condition is violated. Then a new (improved) optimum soution can be obtained by using usual
simplex method starting with the following augmented optimum simplex table of Example 6 (a) :

G- 3 4 | 7 0 0 0 10
BASIC VARIABLES Cp Xgp X Xa Xs X4 Xs X6 Xy Xs Min
Ratio column
Xy 3 16/19 1 9/38 172 0 5/38 -1/38 0 3/38 3273
Xy 7 5/19 0 21/19 0 1 -1/19 4/19 0 26/19 '5/26 «
X7 0 126/19| O 59738 9/2 0 -1/38 -15/38 1 7/38 252/1
2=283/19 0 169/38 1/2 ?, 1738 53738 0 —7438 « A

It is easy to obtain the revised table by taking 26/19 as key element.

9.-8-2 . Deletion of Existing Variable
Let the existing variable x, be deleted from the given L.P.P. : max. z=CX, subject to AX=b ,X 20,

whereCc,X e R'andbe R™.
We now wish to investigate the effect to this deletion on the optimality of the current optimal basic
solution X . Here two cases will arise : Casel:x, € Xg, Case2: x,€ Xg.
In the first case, the deletion of x, would be a totally superfluous operation and thus we have no concern
with this case (becasue, x, € Xg does not change Xg) '
In the second case, let x, = xg, € Xp . There will be two different ways to tackle this situation.
(1) Make x,, (= xg,) non-basic using the dual simplex entry criterion :
This will result in a new basic solution, that is, dual feasible but not necessarily primal feasible. Then,
deleting the column of X, from the simplex table, we can re-optimize using the dual simplex method.
(2) Assign a largest negative cost (-M) to x,, and then apply the standard (primal) simplex method, taking
the modified current optimal simplex table as the starting table to obtain a new optimum solution.
Here we shall explain the method (2) only.
Example 12. Let us once again consider the Example 6(a). Let the variable x4 be deleted from the L.P.P.
of the example 6 (a) obtain an optimum solution to the resulting L.P.P.
Solution. The variable to be deleted is a basic variable. So assign a cost —-M to x4 and consider the
optimum simplex table as the initial simplex table for the L.P. problem.
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Starting Simplex Table

G- 3 4 1 -M 0 0 0 v
[ MIN. RATIO
BASIC| Cp X, X, X, X3 X, Xs Xg X7 (Xp/X3)
VAR.
X 3 16/19 1 9./38 172 0 5/38 —1/38 0 32/9
x| -M 5719 0 o 1V 1] S —— O e e e /19— — /19— o | _51e
Loy 0 12619 0 59/38 9/2 0 -1/38  —15/38 1 258/50
R, 0 —@M12s) 15 0 @Mi15) —@M+3) 0 <4
=" 38 l 38 38
T
First Iteration. Insert X, and remove X, .
G- 3 4 1 —M 0 0 0
BASICVAR. | ¢y Xp Xy X, X3 X4 Xs Xe X,
X1 3 11/14 1 0 172 x /77 -1/14 0
X2 4 5/21 0 1 0. x 1721 42 0
x7 0 5123/58 0 0 9/2 x 1721 -29/42 1
z=139/42 0 0 172 x 5721 23/42 0 Jea

Thus, the new optimum solution becomes: x,=11/14, X=5/21,x3=0, max z= 139/42 .
9:8-3. Addition of New Constraint

Let us consider the L.P.P. : Max. Z2=CX,s.. AX=b,x > 0
real activity matrix. '

First re-arrange the columns of A so that the first m column vectors of A form a basis set. Originally we
have m constraints in the problem.

»Where C,X e R" ,be R™,and A is an m x n

To proceed further, we assume that one more constraint:al X < bm+1,whereae R" and b, 41 is scalar
constant, be added post-optimality to the given L.P.P.

Now our aim is to study the effect of this modification on the optimality of the current optimum basic
feasible solution X of the given problem. Then two cases are of our interest :
(1) Xg satisfies the new set of constraints. (2) Xp

does not satisfy the new set of constraints.
Case 1. If case 1 occurs, Xp satisfies, that X, remains optimum for the post-optimal L.P.P. It follows from
the fact that a redundent (extra) constraint cannot enlar

ge the feasible space of an L.P.P. However, it can either
reduce the feasible space or leave it unchanged. Thus, Xg will remain optimum for the new problem, because if
Xy remains feasible it will remain optimum.

Case 2. If case (2) occurs, we have to search for some other
constraint to standard form by introducing a slack variable Xy .
(m + 1) constraints:

optimum solution. For this, we convert anew
Thus the resulting L.P.P. has the following

AX=Db (original m-constraints)
a'x + X=bp .1, (m + 1)th constraint.
. . Xg /. .
Where X and x, are required to be non-negative as usual. Then we have to show that X* = [x BJ 1s a basic
:
feasible solution to the new L.P.P. To prove this, we collect the activity columns corres onding to
XBU > XB2 5 ooo, Xy , Xyinto an (m + 1) X (m + 1) basis matrix :
gc=(B O
u 1/

where u = (a,, , | "Om+ 1,25 05 Gyyy,), Where a,,, 1,j being the jth component of u. Obviously, B*
will form a basis matrix since it has aninverse
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=1 _ B_l- 0
(B —(—-uB_l 1)

It can be verificd that (B*) (B*) ' =Ins1 -
" Now, with the help of above inverse of new basis, we can easily compute all the required values to
complete the simplex table for the new problem.
Computation of Xg* . The new values of basic variables are given by,

* __ Xp _mEyv- R* B_‘ o) b _ B-lb _ Xg
e _[XS]‘(B) b —(—uB“ 1](17".“]—[1;,,,”-“3“1, b1 —uXp

where b* denotes the new requirement vector.
Computation of X;* . Now for the new problem, each column of activity matrix becomes
ajc = (aj, am+ ,j) and, therefore, X;* is computed by,

-1 x
x -1 B 0 a i
Xj = (B*) aj* = -1 j = L B—l .
-—uB 1 NGm+1,j Qpv1,j— 8 a;

Computation of net evaluation Aj* _The net evaluation for any non-basic variable x; is given by

A* =Cg*x* —c;=(Cy,0) X; —¢;=CgX;—¢; =4,
J B J B> a,,,H,j—uB_laj JTEBA TN TR

which proves to be the same as before.

Computation of z¥. We know, z* = (Cs, 0) (Xg,X.)=CpXg=2.
From above computations, we observe that there is no change in the entries of optimum simplex table of the
given problem. We only need to add a new row for the (m + 1)th basic variable x; whose value and
X;-components are given by above formulae for Xg* and X;*, respectively. Then, we can easily solve the new
post-optimal problem by using dual simplex method.

Remarks :
1. Since the sign of by, + 1 is not specified in the additional constraint, so a constraint of opposite inequality form can be multiptied
throughout by -1 and then added to the given problem in the like manner.
2_ i the last column in B* occurs due to an artificial variable (instead of slack variable), we assign a cost -M to that variable and
then apply. the usual simplex method to obtain an optimum solution. it is worth-noting that the net evaluations 2;— ¢; do not

remain unchanged in this situation.

3. Whenever more than one constraints are added to the given problem and all are not satisfied by the original optimum solution,
then itis advisable to soive the problem anew.

Working Rule. We suppose that, after obtaining the optimal solution, it is decided that a new constraint
should be introduced to the given problem. This newly introduced constraint can afffect the feasibility of the
present optimal solution only if it is active. Consequently, the first step would be to judge whether the new
constraint is satisfied by the present optimal solution or not. If the constraint is satisfied, the newly added
constraint is redundant and the optimal solution remains unchanged. If the constraint is not satisfied, the new
constraint must be introduced to the system of constraints as shown below by a numerical example. We add a
slack variable and also add the resulting equation to the final set of equations. Let the new slack variable be the
basic variable for the new equation and we algebraically eliminate any other basic variables that appear in the
equation. Although the conditions of optimality will still be satisfied, but the solution will be infeasible since the
new slack variable will be negative. In fact, to start with infeasible optimal solution and to progress towards
feasible optimal solution is the situation where the dual simplex method should be used.

To illustrate the procedure we discuss the following example.

Example 13. (a) Discuss the effect to addition of new constraint x; < 10 on the optimality of the optimal
solutiontothe L.P.P. :

Max. 7= 3x, + 5x, , subjecttox; < 4,3x, +2x < 18;5x,x, 2 0.

(b) If, instead, the constraint X, < 6 is added to the problem in (a) above, discuss the post-optimality
analysis. )

Solution. (a) After introducing the slack variables x3 and x, the given problem becomes :

Max. z=3x; + S5x; + Ox3 + Ox,, subjectto
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X + X3 =4
30 +2x;  +x =18
X1 ,X3,X3,X > 0.
Applying usual simplex method we have obtained the optimal simplex table 9-8 . The optimal solution thus
obtainedis:x; =0,x,=9,x3=4,x,=0.

When the new constraint x, < 10 is added to the given problem, we observe that this constraint is satisfied
by the current optimal solution and it is redundant. That is, there is no effect of adding the new constraint
R <10.

(b) Now, suppose the constraint, x, <6, is added. It is observed that it is not satisfied by the current
optimal solution. Hence the current optimal solution : (x1=0,x=9,x3=4, x,=0) is no longer feasible.
Thus in order to clear infeasibility, the new equation x, + x5 = 6 must be added to the optimal tableau. Here x;
is a slack variable. To do so, we need to eliminate the basic variable x; from the new equation. This is done by
subtracting the proper multiple of given equation from the new equation, as follows :

Ox) + 1x; +0x3 4+ 0xy + Ix5 =6 (new equation)

% X+ Iy +0x3 + %x4 +0x5=9 (after dividing the given equation by 2)
On subtracting the second equation from first, we get
3 1
—Exl +OX2 +OX3 "5_{4""’15:— 3.

This modified equation can be added as a third row in the optimal table 9-8 to give the following new table.

Table 9-11
= 3 5 0 0 0
BSIC Cp Xp X X, X3 X4 . Xs
VARIABLES (D) () B3
x 0 4 1 0 1 0 0
X2 5 9 32 1 0 172 0
xs 0 - -3 0 0 -12 1-
z=CpXp =45 9/2 0 0 572 0 &« A
T 4
A =CgX;—¢;=(0,5,0)(1,3/2,-3/2)-3=9/2
Ay=CpXy—cy=(0,5,0) (0,%,—%)-0:5/2.

The resulting optimal solution becomes : x; =0,x,=9,x;=4, x, =0, xs=— 3, which is infeasible
because xs violates the non-negativity restrictions. However, applying the dual simplex method, starting with
this table, soon gives the desired feasible optimal solution as follows :

To determine the leaving vector :

Since xg, = min [xg; , xg; < 0]=min [~ 3] =~3=xg,;.

Therefore, r = 3 , which indicates that key row is the third one. So we must remove B3, ie Xs.

To determine the entering vector a, :

A&— ax ﬁ —Aiforx <0, x34<0]=max 972 572 —i—-él-
P P it ek e P Y R V7Y I S

Therefore, k = 1, which indicates that key column is the first one.

So we must enter the vector a; corresponding to variable x; .

Therefore, the key element is found to be [~ 3/2] which is the intersection of third row and first column.
We now get the following transformed Table 9-12 .
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, Table 912
G- 3 5 0 0 0
BASIC VAR. Cs Xp X; X, X3 X, Xs
x3 0 2 0 0 1 -1/3 2/3
x 5 6 0 1 0 0 1
x 3 2 1 0 173 -2/3
=36 0 0 1 3 4

Ay=CpX4—¢4=(0,5,3)(-3,0,9)-0=1,A,=CpXs —c5= (0,5, 3) G,1 ,-§)—0=3.
Thus, the new optimal feasible solution will be read from above table as x; =2 ,x,=6,x3 =2, with
max z=36.

Example 14. Consider the following table which presents optimal solution to some linear programming
problem.

BASIC Cg Xp Xy X, X3 X4 Xs X6 Xy Xg
VAR.
X1 2 3 1 0 0 -1 0 05 02 -1
X2 4 1 0 1 0 2 1 ~1 -1 05
X3 1 7 0 0 1 -1 -1 5 -03 2
z=17 0 0 0 2 0 2 01 2 « Aj

If the additional constraint 2x, + 3x; — x3 + 2x4 + 4x5 < 5 were annexed to the system, would there be
any change in the optimal solution ? Justify your answer.
Solution. Itis observed thatXg =[3 1 7] withB =1;. After the addition of the given additional constraint
to the problem, the new basis matrix becomes :
B*:.::- 01 ,whereu=(2 3 -1).
The optimum solution to the adjusted problefn is then given by

L (5o 1 7 .

Thus Xg* is an optimum basic feasible solution to the new problem.

9-8-4 Deletion of Existing Constraint.

Now we shall consider the case when one of the existing constraints is deleted post-optimally from the
problem. There are two possible cases :

(1) The constraint in question is a binding on the optimum solution Xg.

(2) The constraint in question is not a binding on the optimum solution Xy .

Obviously, case 1 gives rise to a post-optimality problem. Because, the deletion of a non-binding
constraint can only enlarge the feasible region, and all new solutions are inferior to Xg . This statement can be
easily verified by graphical method. Also, if the constraint in question has a positive valued slack or surplus
variable in the optimum solution X , then the constraint cannot be a binding on Xy and hence X must be an
optimum solution to the new problem.

To consider case 1, the earliest way to proceed is via the addition of one or two new variables. Let the
constraint in question be

anxitapx;+... +a,~,,x,,=b,~
which is the ith constraint of the given problem. Now adding to it a slack and a surplus variable, as follows :
ainXy +apXy + .+ X+ Xn 41— Xy 2= by,
wherex,.; 2 0,j=1,2.
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This implies that we are allowing the L.H.S. of the constraint in question to be > or < b; as well. For
example, (a;1x; +apx; + ... + a;px,) < by is quite feasible because the slack can be accomodated by a positive
value of x, , 5. Thus, by introducing x, , | and x,,, , we have, in fact, deleted the constraint in question. The
procedure of adding new variables to an L.P.P. has already been discussed earlier.

| 9:9. MORE ILLUSTRATIVE EXAMPLES |

Example 15. Consider the LP problem : Max. z = 3x) + 4x; + x3 + Tx4, subject to the constraints :
8x; +3xy+dus+x4 < 7,20+ 6x + x5+ 5x,< 3, X +4x+5x;3+ 20, <8, and x,x%,%,x 20.
(a) Determine the optimal solution.
(b) Discuss the effect of discrete changes in b; , where b;(i=1,2, 3) are the constants on the right hand
side.
(c) Discuss the effect of discrete changes in cjon the optimality of the optimum basic feasible solution.
(d) Discuss the effect of discrete changes in the activity coefficients a;; of A on the current optimum basic
Sfeasible solution.
(e) Let alinear constraint 2x; + 3x; + x3 + 5x, < 4 be added to the constraints of the problem. Check
whether there is any change in the optimum solution of the original problem.
Also discuss the case when the upper limit of the above constraint is reduced to 2.
Solution. Introducing the slack variables xs 2 0,x5 2 0,and x; 2 0, and then solving the problem by
simplex method, the following simplex table is obtained :

Optimal Table 9-13 B!
cj— 3 4 1 7 0 0 0
BASIC| Cg Xp X3 X, X3 X4 Xs Xs X,
VAR. B B B3
Xy 3 16/19 1 9/38 172 0 5/38 -1/38 0
x4 7 5/19 0 21/19 0 1 ~1/19  4/19 0
xq 0 126/19 0 59/38 172 0 -1/38 -15/38 1
z=83/19 0 169/38 172 0 1738 53/38 0 lea
(a) The optimal solution to the given problem can be read off from the optimum table :
x=16/19,x=0,%=0,x=5/19, max z=83/19.
(b) Using the relationship
Max Min
T xBi] . ~XBi
i | _l SAp < i B—
Bu>0 Pu By<olL Pi
the individual effects of changes in b, , b, , bs, such that optimality of new basic solution is not violated,
are given by
, -16/19 . | =5/19 -126/19
—2L < — = == - < <5.
(i) 538 S Ab; < mm[_]/lg, —1/38] o 32/5 <Ab; <5
. -5/19 o . [-16/19 -126/19
207 < < s 2 - < < .
) 2319 < pp, < m1n[_1/38,_]5/38] or 5/4 < Ab, < 84/5
(iii) ‘—‘% < Ab, or ‘—l‘(? S Ab,.

(¢) ThecostvectorisC=(c,c,,¢3, ¢4, Cs, Cg , ¢7) and the basic cost vector as Cg=(c),c4,cq).Then
the changes in ¢;’s can be classified in two ways :
(1) changesinc;whenj=1,4,7, (2) changesinc;whenj=2,3,5,6.
For (1) an optimal basic feasible solution will maintain its optimality if the change Ac, in ¢, satisfies the
relationship :
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Max (_A.
J —1 < ACB,.

x; > 0{ Frj
Thus the limits for changes in ¢,’s are given by
- 169/38 = 1/2 = 1/38 < Ac <€ ~53/38
| 9/38 172 ° 5/38 -1/38

-169/38 ,53/38 < Acy €= 1/38
| 21/19 ° 8/38 -1/19

(i) max

(ii) max

(iii) max

| 5938 * 9.2

IA

(- 169/38 —1/2 . [-1/38 -53/38
izt < <
] S Aep = mm[— 1738 = 15/38

or -1/5 £ Ac; £ 53.

or -169/42 < Acy <

] or

1
5

—1/9 < Ac; S 1.

For (2), the change Ac, in ¢, must satisfy the upper limit Ac, < z, — ¢, in order to maintain the optimality

of the optimum basic feasible solution.
Thus,

(d) Compute

Ac, < 169/38 ,Ac; € 1, Acs< 1/38, Acg < 53/38.

CgP1=(3 7 0)(5/38,-1/19,- 1/38) = 1/38,
Cgfr=(3 7 0)(-1/38,8/38,-15/38) =53/38,

CB3=(3 7 0)(0 0 1)=0, wherep, , B, , B;are the column vectors of B .

Let the element a;; of A be changed to a,;- =a;; + Aay.
Case 1. ayis not in the basis B.

In the optimal table, X, , X3, Xs and X¢ are not in the basis, therefore the ranges for discrete changes in the
coefficient a;; corresponding to these non-basic vectors are given by

(— 169/38)/(1/38) < Aay, = Aay, = — 169

(- 169/38)/(53/38) < Aay = Aay, = — 169/53
(—169/38)/0 < Aazy < 0 = ~o0 < Aayy < o
(=3)/(1/38) S Aayz = Aays 2 — 19

(=3)/(53/38) < Aays = Aay 2 —19/53
(=370 < Aagz < & = -0 < Aay; < o
Case 2. g inthe basis B.

(-=1/38)/(1/38) < Aa;s = Aays 2 — 1

(= 1/38)/(53/38) < Aays = Adys >—1/53
(= 1/38)/0 < Aazs < o0 = —o00 < Aazs < o0
(- 53/38)/(1/38) < Aajg = Aayg 2 — 53
(= 53/38)/(53/38) < Aays = Aayg > — 1
—o00 < Aa36 < oo,

Since X, , X, and X; are in the basis, therefore any discrete change in a; € B may affect the feasibility as
well as the optimality of the original optimum basic feasible solution X .
Consider the discrete changes in a;;belonging to X, = B .

8 {169 ) 21

Compute, By (z2—¢2) —xCp B =

B2z (25— €5) ~ x5 Cy |32=§§ rm
8 (53 8

38| 38 | 19|38
. 8 (1 53
Bra(z3—¢3) —xp3Cy Bz=§(§)-0(§§

8 (1) (.1

.23
38

B2z (26 — c6) — x26 Ca [32=-3—§ % -3l 3 =0
Therefore, the range for the discrete change in ay4 is given by :

max | /2 =1/38
2/19° 3/38

Further, since

] < A024 < min

—169/38
23/38

or —1 < Aay < 169/23. (A)
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126 { 8 5{ 15} 3
X3 Byy — x5y Byr =x - =290 24 1)) 2
B3 D24 32 2= xp3 P — xp2 Bx 19138 19l 382
Therefore, the range for the discrete change in the element ay, ift order to maintain the feasibility is given
by

-16/19 -126/19
max [—7-/3—8——57] SAay  or  —84/19 < Aay. .(B)

Since (A) and (B) are to be satisfied simultaneously, — % < ayy S 169/23.

Similarly, the ranges for the discrete changes in the elements a4 , a4 , etc. can also be determined.
(e) Including the additional constraint to the problem, the new basis matrix becomes

g

u

because a slack variable has been introduced in the given additional constraint. Thus the optimum solution to
the new L.P. problem is given by

wro[ X J_[16 5 126
P -uxg+4 T(197197 19
which is feasible also.

The value of the objective function remains unchanged, since zero cost is assigned to slack variables.
Let us now discuss the case when the additional constraint to be included is : 2x; + 3x; + x3 + 5x4 < 2.

Since X, , X4 and X, are in the basis, corresponding coefficients in the additional constraint must vanish.
This may be achieved by using the appropriate row operation and thus yielding the following table.

_: whereu=(2 5 0),

¢ 3 4 1 7 0 0 0 0
BASIS| Cp Xy X, X, X3 X, Xs X Xy Xs
VAR.
xi 3 16/19 1 9/38 172 0 5/38 -1/38 0 0
X 7 5/19 0 21/19 0 1 -1/19 4/19 0 0
X7 0 126/19 0 59/38 172 0 -1/38 -15/38 1 0
x5 0 -1 ()} -3 0 0 o [-1] 1
2=83/19 0 169/38 172 0 1738 53438 0 2 — A;

It is observed that a basic solution to the new problem becomes : Xp=[16/19,5/19,126/19,—1]
which is not feasible. Therefore, dual simplex method must be applied to obtain the optimum basic feasible
solution to the new problem.

Now apply dual simplex method bacause Xy is not feasible here.

First Iteration. Remove Xg and insert Xg.

G- 3 4 1 7 0 0 0 0
‘i;:\séc Cs Xp X; X; X3 Xs Xs Xs X, Xs
X1 3 33/38 1 6/19 172 0 5/38 0 0 -1/38
X4 7 1/19 0 9/19 0 1 -1/19 0 0 4/19
X7 0 267/38 0 52719 172 0 —1/38 0 1 - 15/38
X6 0 1 0 3 0 0 0 3 0 -1
z=113/38 0 5/19 1/12 0 1/38 0 0 53/38 — Aj

Thus, addition of new constraint has increased the optimum value of the objective function from 83/19 to
113/38.

SELF-EXAMINATION QUESTIONS
1. (a) Write an explanatory note on sensitivity analysis.[AIMS (Bang.) MBA 2002; Delhi B.Sc. (Maths.) 90; Meerut 90]

(b) What do you understand by th term sensitivity analysis ? Discuss briefly :
(i) Variation of the ¢; . (ii) Variation of the b; .
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2.

3.

Given that the problem : Max z=cx such that Ax=b,x 2 0 has an optimum solution, can one obtain a linear
programming problem which has an unbounded solution changing b alone ?. .

Consider the following L.P.P. :
Max. z= ex, subject to Ax=b,and x> 0, where ¢c,xe R”,be R and A is any m x n real matrix. Determine how
much can be components of the cost vector ¢ be changed without affecting the optimal solution of the L.P.P.

What do you mean by ‘sensitivity analysis’ ? Discuss sensitivity analysis with respect to :
(a) Change in the constraintmatrix; and (b) Addition of a new constraint.

Find the limits of variation of ay so that the optimal feasible solution of Ax =b, x> 0, max. z= cx remains optimal
feasible solution, when ay is not a vector of the optimal base.

Describe the role of duality for sensitivity analysis of a linear programming problem.
Explain with suitable examples the basic philosophy behind sensitivity analysis.

EXAMINATION PROBLEMS
Consider the LP problem : Max. z=5x, + 12x, + 4x3, subject to the constraints :
X1+2X%+X3<5, 240-Xx%+3x=2, and Xx,x%,X320.
The optimum solution to this problem is contained in the following table.

BASIC
X X X X: A
VAR B 1 2 3 X4 1
X7 8/5 0 1 -1/5 2/5 —1/5.
X 9/5 1 0 /5 1/5 2/5
e=281 0 0 3/5 29/5 M-2/5 |4

For each of the discrete parameters listed below, make the necessary corrections in the optimum table and solve the
resulting problem:

(a) changebto(3 10)from (5, 2), (b)change cto (4, 10, 4) from (5, 12, 4), (c) change as to [_ g] from [;] .
Given the LP problem : Max z = 4x; + 3x; + 4x3 + 64 subject to the constraints :
X1+2%+2X3+4x3S8, 2X1+2X3+x<6, I +30+x3+x%<8; and X ,X,X3,X20.
(a) Determine the separate ranges for discrete changes in ax , as» and an consistent with the optimum solution of the
given LP problem.
(b} If a2 is changed to ax; + Aapz , determine the limits for discrete change Aag, so as to maintain the optimum solution.

A stainless steel utensil manufacturer makes three types of utensils. The restrictions, profits and requirements are
tabulated below :

Utensil Type I n m
Raw material requirement (kg. per unit) 6 3 5
Welding and finishing time (hours per unit) 3 5
Profit per unit (Rs.) 3 1 4

If stainless steel (raw material) availability is 25 kg and welding and finishing time available is 20 hours per day, the
optimum product mix problem boils down to—
Max. 2= 3x; + xp + 4x3 , subject to the constraints :

6x; + 3% + 5x3 S 25 kg. (raw material restriction)
3x + 4x2 + 5x3 < 20 hours (time restriction)
and x;, the number of units of ith type to be produced> 0.

Proceeding in the usual way, we get the optimal table as given below.Circle the appropriate answaer of the following
post-optimality conditions in question regardless of the earlier conditions :

= 3 1 4 0 0
BASIC VAR. Cs X X, X; X3 Xq Xs
Xy 3 5/3 1 -1/3 0 173 -1/3
x 4 3 0 1 1 -1/5 2/5
z=17 0 2 V] 1/5 3/5 « A

(a) The second type of utensil would change the currently obtained optimal basis if its profit per unitis :
21,213,213, 22, 23.
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(b) The simplex multiplier assiciated witn the machine time restriction of 20 hours is (~ 3/5) . Thus multiplier remains
unchanged for the upper limit on the machine time availability of

1 1 1
25 27 2 35 42 2 2 425
(c) Theincrease in the objective function for each unit availability on machine time higher than upper limitindicated in (b)
aboveis............ (show calculations).
(d) Thtq pr?fit of third type of utensil is Rs. 4.00 per unit. The lower limit on its profitabitity such that the current basis is still
optimal is,
4 3 2] 2 <2

(e) Suppose the objective function to be maximized is changed to z= 2x; + 3x; + 4x3 . Write the optimal solution, if
possible.
(f) If the machine hour availability reduces from 20 hours to 18 hours, the optimal programme would require (j)increase,
(ii) decrease in the activity level of type third of utensil, by
2/5 4/5 5/4 2 5/2.

4. Solve the LLP : max. z=8x; + 9xp, subject to the constraints :
5x1+4x <40, X1 +2x, <512, 5x1+ 19x <95, and xq, X 20.
Use sensitivity analysis to modify the optimal solutions as follows :
(i) first add the constraint 4x; + 5x < 40. (i) then delete the constraint 5x; + 4x; < 40.
What this amounts to ? [Roorkee M.Sc. | (Appl. Maths.) 96]
OBJECTIVE QUESTIONS
1. Sensitivity analysis

10.

1.(d)

(a) is also called post-optimality analysis as it is carried out after the optimal solution is obtained.

(b) allows the decision-maker more meaningful information about changes in the LP model parameters.

(c) provides the range within which a parameter may change without affecting optimality.

(d) all of the above.

When an additional variable is added in the LP modael, the existing optimal solution can further be improved if

(@z-¢<0. (b)zj~¢c 2 0. (c) both (a) and (b). (d) none of the above.
Addition of an additional constraint in the existing constraints will cause a

(a) change in objective function coefficients (c). (b) change in coefficients aj .

(c) both (a) and (b). (d) one of the above.

If the additional constraint added is an equation and an artificial variable appears in the basis of the new problem, the
new optimal solution is obtained by

(a) assigning zero cost coefficient to the artificial variable if it appears in the basis at negative value

{b) assigning —M cost coefficient to the artificial variable if it appears in the basis at positive value

(c) either (a) or (b). (d) none of the above.

To ensure best marginal increase in the objective function value, a resource value may be increased whose shadow
price is comparatively

(a)larger. (b) smalier. (c) neither (a) nor (b). (d) both (a) and (b).
A non-basic variable should be brought into the new solution mix provided its controbution rate (c) is
(a) ¢j = i+ (zj- ). (b) ¢f > cj+ (zi— ¢). (€) ¢j < cj+ (Zj- ©). {d) none of the above.

While performing sensitivity analysis, the upper bound infinity on the value of the right hand side of a constraint means
that

(a) there is slack in the constraint. (b) the constraint is redundant.

(c) the shadow price for that constraint is zero. (d) none of the above.

The entering variable in the sensitivity analysis of objective function coefficients is always a

(a) decision variable. {b) non-basic variable. (c) basic variable. (d) slack variable.

To maintain optimality of current optimal solution for a change Ac in the coefficient ¢, of non-basic variable x,, we must

have
(a) Ack =2k — Ck. (b) Ack = z«. (C) ek + Ack = Zk. (d) Ack 2 Z.

In sensitivity analysis of the coeficient of the non-basic variable in cost minimization LP problem, the upper sensitivity
limit is .
(a) original value + lowest positive value of improvement ratio.
(b) original value — lowest absolute value of improvement ratio.
(c) positive infinity. (d) negative infinity.
Answers
2.(a) 3.(c) 4.(0 5.(a) 6.(c) 7.(d) 8.(d) 9.(c) 10.(c)

e K



INTEGER LINEAR PROGRAMMING
(Cutting Plane Method & Branch-and-Bound Method)

10.1. INTRODUCTION |

As the name implied ‘Integer Linear Programming Problems’ are the special class of linear programming
problems where all or some of the variables in the optimal solution are restricted to non-negative integer
values. Such problems are called as ‘all integer’ or ‘mixed integer’ problems depending, respectively, on
whether all or some of the variables are restriced to integer values.

One might think it sufficient to obtain an integer solution to this special class of linear programming
problem by using regular simplex method and then rounding off the fractional values thus occuring in the
optimal solution. But in some cases, the deviation from the "exact" optimal integer values (as a result of
rounding) may become large enough to give an infeasible solution. Hence there was a need to develop a
systematic procedure in order to identify the optimal integer solution to such problems.

In 1956, R. E. Gomory suggested first of ali the systematic method to obtain an optimum integer solution
to an ‘all integer programming problem’. Later, he extended the method to deal with the more complicated
case of ‘mixed integer programming problems’ when only some of the variables are required to be integer.
These algorithms are proved to converge to the optimal integer solution in a finite number of iterations making
use of familiar dual simplex method. This is called the “cutting plane algorithm” because it mainly introduces
the clever idea of constructing “secondary” constraints which, when added to the optimum (non-integer)
solution, will effectively cut the solution space towards the required result. Successive application of these
constraints should gradually force the non-integer optimum solution toward the desired “all-integer” or
“mixed integer” solution. ‘

Another important approach, called the “branch-and-bound technique” for solving both the all-integer
and the mixed-integer problems, has originated the straight forward idea of finding all feasible integer
solutions. A general algorithm for solving ‘allinteger’ and ‘mixed integer’ linear programming problems was
developed by A.H. Land and A.G. Doig (1960). Also, Egon Balas (1965) introduced an interesting
enumerative algorithm for L.P. problem with the variables having the value zero or one, called the zero one
programming problem.

Several algorithms have been developed so far for solving the integer programming problems. But, in this
chapter, we shall discuss only two methods : (i) Gomory’s cutting plane method, and (ii) Branch-and-bound
method.

10.2. IMPORTANCE OF INTEGER PROGRAMMING PROBLEMS

We have already pointed out earlier that most industrial applications of large scale programming models are
oriented towards planning decisions. There are several frequently occuring circumstances in business and
industry that lead to planning models involving integer-valued variables. For example, in production,
manufacturing is frequently scheduled in terms of batches, lots or runs. In allocation of goods, a shipment must
involve a discrete number of trucks, freight cars or aircrafts. In such cases, the fractional value of variables
may be meaningless in the context of the actual decision problem. For example, it is not possible to use 2.5
boilers in a thermal power station, 10.4 men in a project, or 5-6 lathes in a workshop.

Many other decision problems can necessitate integer programming models. One category of such
problems deals with the sequencing, scheduling and routing decisions. An example is the travelling salesman
problem which aims at finding a least distance route for a salesman who must visit each of n cities, starting and
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ending his journey at home city. Larger expenditures of capital and resources are required in capital budgeting
decisions. This is the main reason why integer programming is so important for marginal decisions. An
optimal solution to a capital budgeting problem may yield considerably more profit to a firm than will an
approximate or guessed-at solution. For example, fertilizer manufacturing firm with 15 plants may be able to
substantially increase profits by cutting back to 10 plants or less, provided this reduction is planned optimally.

A linear programming problem in which some or all variables x; ... x, are permitted to take the integral
values (whole numbers), is referred as an integer (or discrete) programming problem (I.P.P.). Mathematical
model of the integer programming problem is as follows : .

n
Optimize : z cix,
j=1
Subject to : T oajxi=b, i=1,2,....,m, «.(A)
J
and x20,j=1,2,...,n
and x;interger valued, for j=12, ...p<n

An LP.P. is'termed as pure L.P.P. if the all variables are restricted to take only integral values, i.e. p =n,
otherwseif p < n i.e., if only some (say p) variables are restricted to take only integer values, and the remaining
(n - p) variables are free to take any non-negative values, then the problem is called a mixed I.P.P., Since in an
LP.P. variables are restricted to take discrete values of the variables, the function (objective as well as
functions involve in the constraints) in an I.P.P. are defined only at discrete values of variables and it is also
called as disorded programming problem. The integer programming problem in which variables can take
non-negative values continuously, is termed continuous programming problem. If we drop the last restriction
requiring x; integer-valued, the problem becomes a continuous programming problem. Further
‘xj integer value’ is only the restriction which distinguishes L.P.P. and integer programming problem.

Constraints in an L.P.P. may include any of the sign, (<) or (2) or (=). But by introducing slack and / or
surplus variables, we can always convert them into strict equations. That is why in (A) constraints are
Zaj; xj = b;. Actually the integer programming algorithm does not differentiate between the original and slack
variables in the sense that all variables must be integers. One such problem is capital budgeting problem.
Consider the problem of a firm which has » projects to undertake. But due to budget limitations, not all can be
undertaken. Let the present value of jth projectbe ¢; (j=1,,2 .., n). If b; (i= 1, 2, ....., m) be the amount of
capital available in period /, then the firm’s problem mathematically becomes as follows :

n

Maximize : z= »21 Cj %
j =
n

Subjectto: .Zla,-jijb,-, i=1,2,...m

] -
and x=0o0r 1,j=12,..,n
where xi=1, if projectj is selected

=0, if project j is not selected

In business situations it often arise where the variables of interest have to be integers. Consider for
example, the product-mix problem, where a company, operating within the existing departmental capacities,
has to decide on the number of units of each product to be manufactured, so as to maimize the profit. Under
certain assumptions, it is possible to formulate the situations as a linear program and to solve it by using any
linear programming (L.P.) technique. The optimal solution in such cases may result in fractional values of the
decision variables. But such fractional values do not make any sense in practice, and as such, one is tempted to
round-off these values to the nearest integers and use them for action. Rounding off, may thus result is
sub-optimal or infeasible solution.

It is possible to take care of such eventualities in the initial values. Such a linear program with decision
variables restricted to integer values is called integer program.

While the integer restrictions on decision variables in a L.P. framework may be inherent in the problem
situation, there are also situations, where these restrictions may be imposed by the analyst. Integer variables,



234 / OPERATIONS RESEARCH

specifically those which can take a value of zero or one, have been used in many problems to provide
modelling capabilities beyond those available in L.P. Consider for example, the capital budgeting problem,
where a company is to choose m among n projects. As each project has an associated return and uses a specific
quantity of one or more resources, the problem is to choose the projects so as to maximize return within the
given resource constraint. Analysts have used integer variables to formulate this problem. The decision
variables are defined as x; corresponding to each project j and x is allowed to take a value of one or zero depending
on n whether the project j is chosen or not. Once again, if the integer restrictions are relaxed and the problem is
solved by I..P. technique, fractional values of x;’ s may result, which will be meaningless in this case.

The possible consequences if one solves an integer linear programming problem ignorning the ‘integer
constraints’ and then rounds of the non-integer values of the optimum solution to integers are as given below :

One may be tempted to solve an integer linear programming problem ignoring the ‘interger constraints’
and then round off the non-integer values of the optimum solution to integers. But there is no guarrantee that
the integer-valued solutions that obtained will satisfy all the constraints and as such the solution may not be
feasible at all.

Also the solution with rounded off integer values may not now give the optimum solution. At most it may give
a sub-optimal solution. Due to these reasons, special techniques have been designed for obtaining an optimum
solution in integer programming itself.

In many industrial and business problems, variables have to be restricted to integers. Such situations are :

(i) Machine scheduling problems where machines can obviously take only integer values.
(i1) The manufacture of refrigerators, cars, T.V. sets etc. involves integer values only, as a fraction of TV
set or car cannot be produced.

(i) Assignment of dutjes to persons in a department is another example of integer restriction.

In general, in uny-situation involving the decision of the type *‘either-or’’ can be viewed as an integer
programming problem.

Q. What is an integer linear programming problem ? How does the optimal solution of integer programming problem
compare with that of linear programming problem? [IGNOU 2000 (June)]

[ 10.3. WHY INTEGER PROGRAMMING IS NEEDED ? |

We might think it sufficient to obtain an integer solution to the given LP problem by first obtaining the
non-integer optimal solution using regular simplex method (or graphical method) and then rounding off the
fractional values of the variables. But, in some cases, the deviation from the “exact” optimal integer solution
(obtained as a result of rounding) may become large enough to give an infeasible solution. Hence it was necessary
to develop a systematic procedure to determine the optimal integer solution to such problems. The following
example will make the concept more clear.

The question “why integer programming is needed ?” can be more easily answered through the following
illustrative example.

Consider a simple problem : Max. z = 10x, + 4x, , subject to the constraints :

3x, +4x, <8 ,x,20,x 20, and x, , x, are integers.
First, ignoring the integer valued restrictions, we obtain the optimal x,
solution : 4

x; = 22, x,=0,max. z=262, by using graphical method. Then, by ;|
rounding off the fractional value of x; = 2% , the optimum solution becomes
x; =3 ,x,=0 with max. z=30. But this solution does not satisfy the }
constraint 3x; + 4x, < 8 and thus this solution is not feasible.

Now, again, if we round off the solution to x; =2, x, =0, obviously
this is the feasible solution and also integer valued. But, this solution gives
z =20 which is far away from the optimum value of z= 26% - So, this is ]

another disadvantage of getting an integer valued solution by rounding
down the exact optimum solution. Still there is no guarantee that the
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“rounding down” solution will be an optimal one because it may be far away from the optimum solution.

Thus, a systematic procedure for obtaining an exact optimum integer solution to integer programming
problems is needed.

We shall now give the formal definitions of integer programming problems.

| 10.4. DEFINITIONS B

L. Integer Programming Problem (L.P.P.). The linear programming problem : Max 7 = CX , subject to
AX = b, X 20 and some X; € X are integers, where C,X€ R" ,be R" and A is an m X n real matrix, is
called an Integer Programming Problem, abbreviated as I.P.P.

2. All Integer Programming Problem (All I.P.P.). An integer programming problem is said to be an “All
Integer Programming Problem” if all X; € X are integers.

3. Mixed Integer Programming Problem (Mixed I.P.P.). An integer programming problem is said to be
‘Mixed Integer Programming Problem’ if not all x; € X are integers.

Q. 1. State the general form of an integer programming problem. [Meerut M.Sc. (Math) 93]
2. Distinguish between pure and mixed integer programming problems.

I-Gomory’s Cutting Plane Method

l 10.5. GOMORY'’S ALL INTEGER PROGRAMMING TECHNIQUE j

In this technique, we first find the optimum solution of the given L.P.P. by regular simplex method as discussed
earlier, disregarding the integer condition of variables. Then, we observe the following :
(i) If all the variables in the optimum solution thus obtained have integer values, the current solution will
be the desired optimum integer solution.

(i1) If not, the considered L.P.P. requires modification by introducing a secondary constraint (also called
Gomory’s Constraint) that reduces some of the non-integer values of variables to integer one, but
does not eliminate any feasible integer.

(ii1) Then, an optimum solution to this modified L.P.P. is obtained by using any standard algorithm. If all
the variables in this solution are integers, then the optimum integer solution is obtained. Otherwise,
another secondary constraint is added to the L.P.P. and the entire procedure is repeated.

In this way, the optimum integer solution will be obtained eventually after introducing the sufficient

number of new constraints. Thus, it becomes specially important to discuss below— how the additional
constraints (Gomory’s Constraints) are constructed.

10-5-1. How to Construct Gomory’s Constraint

The secondary constraints which will force the solution toward an all-integer point are constructed as
follows.

Let the optimum non-integer solution to the maximization L.P.P. has been obtained. In our usual
notations, this solution can be shown by the following optimal simplex table.

Table 101
BASIC NONBASIC

BASIC | Cp Xg | XiB) XoB2) . XiB) - XaBw) | Xme1 - Xn
VAR.

X Cpi XBi 1 0 R 0 0 Xi,m+1 Xin

X2 CB2 XB2 0 1 0 0 X2, m+1 X2p

Xi CBi XBi 0 0 1 0 Xim+1 Xin

Xm CBm XBm 0 0 0 1 Xon, m+ 1 . Xmn

z = CgXp 0 0 0 0 Ap sy A, A
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In this table, the variable (xg;,i=1, 2, ..., m) represent the basic variables and the remaining (n — m)
variables X + | Xm+2 5 --- » X, are the non-basic variables. However, these variables have been arranged in
this order, for our convenience. '

Let the ith basic variable xp; possesses a non-integer value which is given by the constraint equation

xgi = 0x;+ 03+ ...+ 1x+ ... +0xp + X i1 X1+ -+ Xig X
n n
or Xgi = X; j+= '§+ lx,-j X; or - X;=Xp; 7=£+ lx,j X; .(10:1)

Now, let and x;=I;+f;, where Ip; and I; are the largest integral parts of xg; and x;;,
respectively, such that Ip; < xp; and I;; < x;; . It follows that 0 <fp;<1and0<f;<1 ; that is, fp; is strictly
positive fraction while f;; is a non-negative fraction. For example,

X4 1, fa=Xa—1a

1 2 1

22 2

-4 -2 2

3 3

-2 -2 0

3 -1 2

5 5

Now substituting above values in the eqn. (10-1) for x; , we get
n
xi = Ug+fp)—_Z Ui+fpx -(10-2)
. Jj=m+1
n n )

or fBi7=,§+1fﬁx‘i=x"-lB""|}=£+l ng} (103)

Now for all the variables x; (i = 1, 2, ..., m) and x; (j = m + 1, ..., n)to be integer valued, the right hand side
of the above equation must be an integer. This implies that left-hand side

n

- 3 X
th j=m+1fg 'j

» n
must also be an integer. Since 0 <f; < 1and Z | f;j %2 0, it follows that the inequality condition is satisfied
j=m+
if
n
foi—. L fjx<0. ...(10-4)
j=m+1

n
This is true because fg;~ Z | fix <fei<l.
j=m+

n
But, since fg;— X , f;j % isaninteger, thenitcanbe eitherazeroora negative integer.
j=m+

Now the constraint (10-4) can be put in the form

n n
fei—. X lﬁjxj'*'gi'—"o, or —f&':J—z fixi+8i ..(10-5)

j=m+ j=m+1

where g;is a non-negative Gomorian slack variable which by definition must also be an integer. The constraint
equation (10-5) defines the so-called Gomory’s cutting plane. From Table 10-1, the non-basic variables
xj=0(@=m+1, ..., n)and thus by virtue of (8-5) g; = — fz; which is clearly infeasible. Thus in order to clear
this infeasibility, we have no alternative except to use the dual simplex method (as described in chapter 6).
Practically, this is equivalent to cutting of the solution space towards the optimal integer solution.
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Now, after adding the Gomory’s Constraint (10-5) , the optimum simplex Table 10-1 takes the form :

Table 10.2. Addition of Gomory’s Constraint

BASIC|] Xg X, X, X X Xme1 o X, ' G
VAR. By B2 ((:h)] B pBmsn)
Xy Xpg| 1 ] 0 0 X, m+1 - Xin ; 0
X2 xm 0 1 0 0 X2, m+1 e X2n i 0
X Xgi 0 0 .- 1 0 Xim+1 - Xin ; 0
) . ; .
I Xpm | 0 ... f 0 ] 0 e 1 Xmmal oo Xm0
&i "'fBl 0 0 0 i “’fB m+1 _me , 1
z 0 0 .. 0 0 Amsi o A, U0 |eA

If the new solution (after applying the dual simplex method) is all-integer one, the process ends.
Otherwise, second Gomory's Constraint is constructed from the resulting optimal table and the dual simplex
method is again used to clear the infeasibility. This process is repeated so long as an all integer solution is
obtaincd. However, if at any iteration, the dual simplex algorithm indicates that no feasible solution exists then
the problem has no feasible integer solution.

10.5-2.

Gomory’s Cutting-plane (All I.P.P.) Algorithm.

The step-by-step procedure for the solution of all-integer programming problem is as follows :

Step 1.
Step 2.

Step 3.
M

(i)
Step 4.

Step 5.

Step 6.

Step 7.

Step 8.
()

If the LP.P. is in the minimization form, convert it to maximization form.
Then convert the inequalities into equations by introducing slack and/or surplus variables (if

- necessary) and obtain the optimum solution of the L.P.P. (after ignoring the integer condition) by

usual simplex method.
Now, test the integerality of the optimum solution which is obtained in Step 2.

If the optimum solution contains all integer values, then an optimum integer basic feasible solution
has been achieved.

If not, go to next step.
Examine the constraint equations corresponding to the current optimal solution. Let these constraints

n
beexpressedby xp = x; + X x;x (i=1,2,..,m).
Jj=m+1

Select the largest fraction of xp; s, i.e. find max [fg;] . Letitbe fg, fori=k .
" i

Express the negative fraction, if any in the kth row of the optimum simplex table, as the sum of a
negative integer and a non-negative fraction.
At this stage, construct the Gomorian Constraint :

n

- x; <0,
fBr j=n21+l fyx]

as described in the preceding section, and then introduce the Gomorian equation

n
"fBi=7=’§+] Jixi+8&

to the current set of equality constraints.

Starting with this new set of constraint equations, obtain the new optimum solution by using dual
simplex method in order to clear infeasibility. The slack variable g; will be the initial leaving basic
variable.

Now two possibilities may arise :

If this new optimum solution for the Modified L.P.P. is an all-integer solution, it is also feasible and
optimum for the given L.P.P.
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(i) Otherwise, we return to Step 4 and repeat the entire process until an optimum feasible integer solution
is obtained.

Explain the concept of in‘teger programming by a suitable example. Give any approach to solve an integer programming
problem.

[Madurai B.Sc. (Comp. Sc.) 92]
Explain the algorithm involved in the iterative solution to all |.P.P.
Explain the cutting plane method of solving an integer problem.

All above steps of Gomory’s algorithm can be more precisely demonstrated by the following flow chart :
Q. 1.

2.
3.

FLOW CHART OF GOMORY’S ALL I.P.P. ALGORITHM

Reformulate the given Ignoring the integer
LPP as a standard constraints, solve
maximization I.P.P. the corresponding

A

L.P.P. by usual
. 281
simplex method.
Modify the simplex
table by adding one
more rovlv and u;ed this optimum The current basic
zd“ablt”'mpthzxomtei; Zm basic solution Yes so{utwn is 'the
o oblain the op h satisfy the integer required optimum
éZi:Z;’;; rtzrs;latg;cgvfz rf— constraints ? integer solution.
able as the starting
leaving variable.

Write down the
constraint equation
corresponding to this

Determine that
: ; basic variable
Gvartaéle. Fmdlthg e which has the
omorian constrain largest fractional
and add the Gomo- rgest fi

rian slack variable to
the current set of
basic variables.

part in its current
solution value.

10-5-3 Computational Demonstration of Gomory’s Algorithm
Example 1. Solve the integer programming problem :

Max. z =Tx) +9x, , subjectto — x) + 3x, £ 6, Tx; + x <35, x, 20, x, 20, and integers.

[Kanpur 96]

Solution. Step 1. Since the problem is already given in standard maximization form, we go to the next
step.

Step 2. Introducing the slack variables, we get the constraint equations

- X1+ 3X2 +Xx3

= 6
Ixy +x,

t+X4 = 35.
Now ignoring the integer conditions and then using the regular simplex method we get the following set of
tables. The optimum solution to the L.P.P. is given by Table 10-3 .
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Table 103
¢ 7 9 0 0
BASIC MIN.
C X X X X X
VARIABLES 5 B ! ., 3 ! (Xp/X)
“—x3 0 6 -1 Hq3]-~—-——- R p—— 0-—--| -—=6/3
X4 0 35 7 1 0 1 35/1
z2=CgXp=0 -7 -9 0 0 A
T 1
x2 9 2 -3 1 173 -0 —
x4 0 33 22/3|-———— 00—~ — — —1/3— — = — 4 1 ”““"‘33/%"4-
z=18 -10 0 3 0 «— A
T 4
X2 9 3L 0 1 7/22 1/22
2
x) 7 4l 1 0 ~1/22 3/22
2
z=CpXp =63 0 0 28/11 15/11 A

The optimum solution thus obtained is : x; = 4l , Xy = 3% ,2=03.
Step 3. Since the optimum solution obtained as above is not an integer solution because of X = 4» and
Xy = 3— we go to next step.

Step4. Wenow select the constraim corresponding to max (fg;) = max. (fz; , fz2) -

SmcexB, = IBI +fBl =3 + 2° and Xpy = 132 + fBZ 4+ , We havcfm fBZ =—;‘ .

Hence, max. (f3 , fg;) = max. [; ;]—%

Thus, in this problem, since both the equations have the same value of fpi »thatis, fg; = fg, ==, either one

of the two equations can be used. Let us consider the x,-equation, i.e., first-row of optimum table
Step 5. Negative fraction does not exist.
Step 6. To Construct the Gomorian Constraint.

The Gomorian constraint is given by, — fz; = — Z f,j X+ g
j=

Herem=2,n=4,i=1,f5 = % . Thus above constraint becomes :

4
~-fB=- E fiXxi+8& or —fg=— fixs—fiaxa+g, (sincex;, x,are slack variables)
Jj=
Substltutmg the values : fi; = 7/22 s J1a=VY22, fz = V2, we get the required Gomorian Constraint as
- % =— 272 X3 — 22 —X3+ g (x3 = x4 =0, being non-basic)

Obviously, the coefficients of remaining variables x; and x, in the above Gomorian constraint will be taken 0.
Thus complete Gomorian Constraint can be written as

7 1
———-0x1+0x2 R R
Adding this new constraint to the Optimal Table 10-3, we get the new Table 104 .

Table 104

- 7 9 0 0 0

BASIC Cp Xp X, X, X3 Xy ' Gy
VARIABLES :

x; 9 3% 0 1 7/22 22 0

x| . 4 1 0 -1/22 3/22 1 0

T AR DN 7 il | =72 B R
:
z=CpXp =63 0 0 28;11 15/11 0 4
: {
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Step 7. To apply dual simplex method.
(1) leaving vectoris Gy, i.e., B3 . Therefore r=3 .
(i) Entering vector is obtained by
Ay Ay Ay 28/11 15/11 A;
}-r; =max.[x—33, x—u}=max[_7/22 - 1/22:|=max. [-8,-30]=-8 v
Therefore, k = 3 . Hence we must enter the vector a3 corresponding to which X; is given in the above table.
Thus, we get the following transformed table.

Table 105
. 7 9 0 0 0
BASIC Cs Xp X X, X; Xe | G
VARIABLES L
“ 9 3 0 1 0 o
Y 7 4 I 0 0 1 -
7 i
Y 0 4 0 0 1 1 -7
7 h
2= Cx, =59 0 0 0 1 8 A

Ay=CyXy=cy=(9,7,0)(0,3,2)-0=(0+1+0)=1
As=CgGy—cs=(9,7,0)(1,-2, -2 -0=(9-1+0)=8.
The non-integer optimum solution given by above table is : x; = 4% yXp=3,x3= l% ,2=59.
Step 8. The optimal solution as obtained above by dual simplex method is still non-integer. Thus, a new
Gomory’s constraint is to be constructed again. Selecting x;-equation (i.e., IInd row of above table) to

generate the cutting plane (because largest fractional part can be fg, = f3 = %) , we get the Gomory’s

constraint as
"“"_;3—%X4—g‘g1+g2. or —%=0x,+0x2+0x3-—%x4~gg1+g2
Adding this constraint to the above Table 10-5 , we get Table 10-6 .
Table 10-6
G- 7 9 0 0 0 0
BASIC Cp Xg Xy X, X3 X4 E Gy G,
VARIABLES . ;
X 9 3 0 1 0 o ;o 0
N 7 44 1 0 "0 IV B Vs | 0
7 |
v 0 4 0 0 1 /7 v =22/7 0
N R | R
g 0 -4/7 0 0 0 L-6/7 1
X
:=CpXp=159 0 0 0 1 ! 8 0 « A
T d

We again apply dual simplex method.

(i) Leaving vector is G, (i.e. B4) . Therefore, r=4 .

(i1) Entering vector will be obtained by

Ak A4 A5 1 8 ' 1 A4

“=max.{Z;,x—‘tj=max.[j]—,:/—7}=max. ['7,—9§]=—7=z.
Therefore, k = 4 . Hence we must enter a4 corresponding to which X4 given in the above table. Thus we get

the transformed table as below :
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Table 107
¢ 7 9 0 0 0 0
BASICVAR. Cp Xs Xi X2 X3 X _; G Gy
x 9 3 0 1 0 0o 1 0
x 7 4 1 0 0 0 : -1 1
x3 0 1 0 0 1 0 | -4 1
X4 0 4 0 0 0 1 16 -7
2=CpXp=55 0 0 0 0 2 7 4

A5=CBG1—05=S9, 7,0,0)(1,-1,-4,6)-0=(9-7+0+0)=2

A6=CBG2—06=¢(§9,, 7,0,0)(0,1,1,-7)-0=(0+7+0+0)=7.
Thus, finally we get the optimal integer solution : x; =4 , x, =3 , max z =155 .
Verification by graphical method :

It can be easily verified that the addition of
the above Gomory’s constraints effepgtvely ‘cut’
the solution space as desired. - Thus the
Gomory’s first constraint :

7 1 -1
nMTpXta="0
can be expressed in terms of x; and x; only by

substituting :

x3=6+x1 - 3x2 and x4=35—7x1 - Xy
from the original constraint equations treating
& as aslack variable in step 2.

This gives g; +x, =3 or x, <3, treating g, as
aslack variable.

Similarly, for the Gomory’s second
constraint, — % X3 — g g1t+g=— 4,

the equivalent constraint in terms of x; and x; is
obtainedasx; +x, <7.

Now plotting the Gomory’s constraints x, <3 and x; + x, <7 in addition to the constraints of the given
problem, we find that it will result in the new (optimal) extreme point (4, 3) as shown in Fig. 10-2 .

Example 2. Find the optimum integer solution to the following all LP.P :

Max. z=x) + 2x, , subject to the constraints 2x, <7 ,x; +x,<7 ,2x; £11,x,20,x,20, and x;,x,;

Fig. 10.2

are integers. [Vidyasagar 97]
Solution. Step 1. Introducing the slack variables, we get
2xz + X3 = 7
X1 + X2 + X4 =17
le + X5 = 11

X)Xy ,%3,%X4,%20.
Step 2. Ignoring the integer condition, we get the initial simplex table as follows :

Table 10-8
¢ = 1 2 0 0 0
BASIC Cs X X; X; X3 X4 Xs MINRATIO
VAR. (Xp/X3)
“x3 0 7 0 . 1 0 0 72
x4 0 7 1 1 0 1 0 "1
X5 0 11 2 0 0 0 1 —
z2=0 -1 -2 0 0 0 «4;
T {

Introducing X, and leaving X, from the basis, we get
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Table 109
o 1 2 0 0 0

BASIC Cs Xs X, X, X; X, Xs. MIN
VAR, (Xp/X))

x 2 3% 0 1 172 0 0 —
—x 3 4—@—-———0——---1/2————1-_-———0—-_ —- 31

x5 1 2 0 0 0 1 112

z=CpXp=17 1 0 ] 0 0 puyy
T 1

Ay =CpX;—¢;=(2,0,0)(0,1,2) 1 =—=1, Ay=CpXs— c3=(2, 0, 0) (%,—%,0)—0:1.

Introducing X, and leaving X, , we get the following optimum table.

Step 3.
Step 4.

Optimum Table 10-10

¢ 1 2 0 0 0

BASIC Cs " X X, X, X; X, Xs
VAR,

x2 2 3 0 1 12 0 0

X 1 3% 1 0 -1 1 0

xs 0 4 0 0 1 -2 1

z=10} 0 0 172 1 0 <4

Ay=CgXy—3=(2,1,0) (5, -3, )-0=(1-1+0)=1
Ay=CgX4—¢c4=(2,1,0)(0,1,-2)-0=0+1+0)=1.

The optimum solution thus obtained 1s:x = 3% , Xy = 3% ,2= 10% .

Since the optimum solution obtained above is not an integer solution, we must go to next step.

We now select the constraint corresponding to the criterion

11 1
max; (fz)) “Max (fpy . fp2 , fp3) =max (5,5,0)=7.
Since in this problem, the x,-equation and x;-equation both have the same value of fg; , i.e. —% , either

one of the two equations can be used. Let us consider the first-row of the above optimum table.
The Gomory’s constraint to be added is therefore

-j_23 4f]j X+ g1=~f or —hs—fisma+ 81 =—fm
1 1 i
—3%—Ox+g=-3 or —yMtg=-3(=x=0)

Adding this new constraint to the optimal Table 10-10, we get the new Table 10-11 .
Table 10-11 . New table after adding Gomory constraint

G- 1 2 0 0 0 0
BASIC Cp Xp X, X, X, X4 Xs | G
VAR. .
x 2 31 0 1 172 0 0 0
2 |
x 1 51 1 0 -1 1 0 0
2 |
e a | ] 1 -2 L 0
a1 0 S5-12 0 F172) 0 ; 1
—10] 0 172 1 ' 0 | «a
z=CgXg=10= [ )
PR 0 ; !




Step 5.

(1)
(ii)
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To apply dual simplex method. Now, in order to remove the infeasibility of the optimum solution :

x| = 3% , Xy = 3% JXs=4,g, =~ ; , we use the dual simplex method.
Leaving vectoris G, (i.e., By) - Therefore,r=4 .
Entering vector is given by

1

Ay A; A 2 A
— = max. —L,x4j <0 =max.[—3 = max. % ==
Xak X4j Xa3 -3 X43

Therefore, k=3 . So we must enter a3 corresponding to which X; is given in the above table. Thus,
dropping G, and introducing X, we get the following dual simplex table :

Table 10-12
¢j— 1 2 0 0 0 0
BASIC Cs Xg X; X, X3 X, Xs ! G
VAR. i
x2 2 3 0 1 0 0 0 1
X 1 4 1 0 0 1 0 : -1
Xs 0 3 0 0 0 -2 Lo 2
x3 0 1 0 0 1 0 0 ' -2
2=CpXp=10 0 0 0 1 0o 1 4

Ay=CpXe—cs=(2,1,0,0)(0,1,-2,0)=0=1, Ag=CsG; —c6=1(2,1,0,0)(1,-1,2,-2)~0=1,

_ This shows that the optimum feasible solution has been obtained in integers. Thus, finally, we get the
integer optimum solution to the given LP.P.as:x; =4 ,x,=3,and max z=10.

105-4.

Short-cut Method for Constructing the Gomory’s Constraint

After obtaining the non-integer optimal solution by simplex method, we perform the following
step-by-step procedure to construct the Gomory’s constraint :

Step 1.

Step 2.

Step 3.

In the optimal simplex table (with all A; > 0), first select the row corresponding to such basic variable
which has the maximum fractional value. If more than one basic variables have the same maximum
fractional value, then we can select the row corresponding to either of these basic variables.

In Example 1, (see Table 10.3 with all A;20) both the basic variables x; and x; have the same

fractional value (i.e. 5 5 ). so we can sc]ect either x,-row or x;-row. In this case, we have

selected x,-row, i.e.

0 i 7/22 1722

— 3L
x> 32

In the row selected above we express each number in two parts. First part must be an integer and
second part must be a non-negative fraction. Thus applying this step to above selected row, we get

x-3+(1/2) 0+0" 1+0° 0+(1/22) 0+(1/22)"

Here non-negative fractional values are marked with ¥’
Then, we write the negative of the fractional values which are marked with “*in step 2. Thus, the new
row corresponding to Gomorian slack variable g, becomes :

0 0 -1/22 -1/22

-1
81 2

This row can be directly added to the optimal simplex table with Gomorian slack variable g, as
additional basic variable and immediately we increase the dimension of basis matrix by introducing
one more unit matrix column G, .

Obviously, above constructed new row will give us the Gormorian constraint :
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1 7 1 7 1 1
—_—> —_— —— —_— —_—— = ——
> 2 0x; +Ox, 23" 33 %s Of Ox; +Ox, 2By Xatg= .

N

After introducing the new row corresponding to the Gomorian constraint, we apply usual dual
simplex method to proceed further.

Above outlined prodcedure will be very convenient to apply directly (orally) whenever we need to
construct a Gomory’s constraint
Example3. Solve the following integer programming problem :
Max. 7 =2x; +20x, — 10x; , subject to the constraints :
2x; +20x, +4x3 <15, 6x) +20x, +4x3 =20,and x, , x, , x3 2 0; and are integers.
Solve the problem as a (continuous) linear program, then show that it is impossible to obtain feasible
integer solution by using simple rounding. Solve the problem using any integer program algorithm.
Solution. Introducing the slack variable x, > 0 and an artificial variable a; 20, an initial basic feasible
solutionis x4 =15 and a; =20 .

Now computing the net-evaluations (4)) and then using simplex method, the following optimum simplex

table is obtained.
Optimal Simplex Table 10-13.

¢ 2 20 -10 0
+ BASIC Ca Xs X, X, X; X,
VARIABLES
x 20 5/8 0 1 1/5 3/40
xy 2 5/4 1 0 0 ~1/4
z=15 0 0 14 1 4

Thus the following non-integer optimum solution is obtained :
x1=5/4,%=5/8 ,x3=0,maxz=15.
The rounded solution willbe x; =1 ,x,=0, x3=0.

Since this solution satisfies the first constraint only, it is not possible to obtain a feasible solution by using
simple rounding. So to obtain the integer-valued solution, we proceed as follows :

51 5
Max. (f , fp2) = Max. (g , Z) =3
Therefore, from the first row of optimal table, we have
1

5= 1 3
s—0x1+x2+'5x3+40x4

or O+D=0+0)x +(1+0)x+O+1) x5+ 0+ 2) xq
The corresponding fractional cut will be — % =0x; +0xy — % X3 — % X4+ 81

Now inserting the additional constraint in the optimum simplex table, the following modified table is
obtained.

Table 10-14
G- 2 20 -10 0 0
BASIC Cs Xp X X, X, X< | G
VARIABLES | !
x 20 5/8 0 1 1/5 3/40 | 0
Xy 2 574 1 0 0 ~1/4 ' 0
-------------------------------------------------------------------------------- .'----_-..-_-.._
g 0 - ~5/8 0 0 -1/5 ‘ 1
z=15 0 0 14 1 ! 0 “A
T i l

First Iteration. Remove G, and insert X, by dual simplex method.



